欧几里得算法

欧几里得算法(辗转相除法)

欧几里得算法(Euclidean Algorithm)是一种高效计算两个非负整数最大公约数(GCD)的方法。它不仅简单易懂,而且在数学和计算机科学中有着广泛的应用。以下是对该算法的深入讲解,包括其原理、扩展、时间复杂度分析以及实际应用。


1. 算法原理

欧几里得算法的核心思想基于以下数学原理:

  • 辗转相除法:对于两个整数 a 和 b(a≥b)(a \geq b)ab,它们的最大公约数 gcd⁡(a,b)\gcd(a, b)gcd(a,b) 等于 gcd⁡(b,amod  b)\gcd(b, a \mod b)gcd(b,amodb)
  • 终止条件:当 b = 0 时,a 就是最大公约数。

数学证明
d=gcd⁡(a,b)d = \gcd(a, b)d=gcd(a,b),则 d 能整除 a 和 b。根据除法的定义:
a=b⋅q+r a = b \cdot q + r a=bq+r
其中 q 是商,r=amod  br = a \mod br=amodb 是余数。由于 d 能整除 a 和 b,它也能整除 r。因此,gcd⁡(a,b)=gcd⁡(b,r)\gcd(a, b) = \gcd(b, r)gcd(a,b)=gcd(b,r)

其中 q 是商,r=amod  br = a \mod br=amodb 是余数。由于 d 能整除 a 和 b,它也能整除 r。因此,gcd⁡(a,b)=gcd⁡(b,r)\gcd(a, b) = \gcd(b, r)gcd(a,b)=gcd(b,r)

通过反复应用这一性质,余数 r 会逐渐减小,最终变为 0,此时算法终止。


2. 算法步骤

  1. 输入:两个非负整数 a 和 b(a≥b)(a \geq b)ab
  2. 计算余数:计算 amod  ba \mod bamodb,得到余数 r。
  3. 替换:将 a 替换为 b,b 替换为 r。
  4. 重复:重复上述步骤,直到 b = 0。
  5. 输出:当 b = 0 时,a 即为最大公约数。

示例
计算 gcd

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王嘉俊925

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值