运筹学单纯形法

  • 线性规划
  1. 线性规划的标准型
    1. 目标函数求最大值(或最小值);
    2. 约束条件均为等式方程
    3. 变量Xi为非负数
    4. 常数bi都大于或等于零
  2. 将线性规划转化为标准型:
    1. 约束是≤的,在左边加上松弛变量xi(或者si,随便什么符合表示都可以)
    2. 约束是≥的,在左边减去剩余变量xi(或者si,随便什么符合表示都可以,和上面的松弛变量统一就行了)
    3. 常数项为负数的约束,两边同时×(-1)
    4. 目标函数化为最大值min Z化为max Z’
  3. 基向量:基矩阵对应的列向量称为基向量;

非基向量:除了基向量以外的列向量

基变量:基向量对应的变量

非基变量:非基向量对应的变量

可行解,最优解,基本解,基本可行解,基本最优解

凸集:集合内,任意两点的连线上的点(包括端点)仍在集合内

  1. 单纯形法(以求最大值为例):

检验数:目标函数用非基变量表示,其变量的系数为检验数

最优解判断标准:当所有检验数λj≤0(代表所有非基变量如果入基,对目标函数的贡献为负,即减小),基本可行解为最优解

典则形式:约束条件系数矩阵存在m个不相关的单位向量;

   目标函数中不含有基变量

满足第一条就可以直接写出基本可行解,满足第二条就可以很快得出检验数

Ep.单纯形法求解max Z = 300x1+400x2

2x1  +x2   +x3    =40

 x1   +1.5x2    +x4 =30

 xi≥0

Cj

300

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值