- 线性规划
- 线性规划的标准型:
- 目标函数求最大值(或最小值);
- 约束条件均为等式方程
- 变量Xi为非负数
- 常数bi都大于或等于零
- 将线性规划转化为标准型:
- 约束是≤的,在左边加上松弛变量xi(或者si,随便什么符合表示都可以)
- 约束是≥的,在左边减去剩余变量xi(或者si,随便什么符合表示都可以,和上面的松弛变量统一就行了)
- 常数项为负数的约束,两边同时×(-1)
- 目标函数化为最大值min Z化为max Z’
- 基向量:基矩阵对应的列向量称为基向量;
非基向量:除了基向量以外的列向量
基变量:基向量对应的变量
非基变量:非基向量对应的变量
可行解,最优解,基本解,基本可行解,基本最优解
凸集:集合内,任意两点的连线上的点(包括端点)仍在集合内
- 单纯形法(以求最大值为例):
检验数:目标函数用非基变量表示,其变量的系数为检验数
最优解判断标准:当所有检验数λj≤0(代表所有非基变量如果入基,对目标函数的贡献为负,即减小),基本可行解为最优解
典则形式:约束条件系数矩阵存在m个不相关的单位向量;
目标函数中不含有基变量
满足第一条就可以直接写出基本可行解,满足第二条就可以很快得出检验数
Ep.单纯形法求解max Z = 300x1+400x2
2x1 +x2 +x3 =40
x1 +1.5x2 +x4 =30
xi≥0
Cj |
300 |