一、数据结构与算法——第1章:绪论

目录

1.1 数据结构的基本概念

1.1.1 基本概念和术语

1.数据

2.数据元素

3.数据对象

 4.数据类型

5.数据结构

1.1.2数据结构三要素

1.数据的逻辑结构

2.数据的存储结构

①顺序存储

②链式存储

③索引存储

④散列存储

3.数据的运算

4.基本数字类型与数字编码

 5.字符编码

1.1.3总结

 1.2算法和算法评价

1.2.1算法的基本概念

1.算法概念

2.算法描述

3.重要特性

1.2.2算法效率的度量

1.时间复杂度

2.空间复杂度

1.3迭代与递归

1.3.1迭代

1.for循环

2.while循环

3.嵌套循环

1.3.2递归

1.调用栈

3.递归树 

1.3.3两者对比


1.1 数据结构的基本概念

1.1.1 基本概念和术语

1.数据

数据是信息的载体,是描述客观事物属性的数、字符及所有能输入到计算机中并被计算机程序识别和处理的符号的集合。数据是计算机程序加工的原料。

2.数据元素

数据元素数据的基本单位,通常作为一个整体进行考虑和处理。一个数据元素可由若干数据项组成数据项是构成数据元素的不可分割的最小单位。例如,学生记录就是一个数据元素,它由学号、姓名、性别等数据项组成。简称元素,或记录结点顶点

⚪关系:数据 >数据元素 >数据项

⚪与数据的关系:是集合的个体

3.数据对象

数据对象是具有相同性质的数据元素的集合,是数据的一个子集。例如,整数数据对象是集合N={0,±1,±2,…}。

⚪与数据的关系:集合的子集

 4.数据类型

数据类型是一个值的集合和定义在此集合上的一组操作总称

数据类型=值的集合+值集合上的一组操作

  1. 1.原子类型。其值不可再分的数据类型。
  2. 2.结构类型。其值可以再分解为若干成分(分量)的数据类型。
  3. 3.抽象数据类型(ADT)。一个数学模型及定义在该数学模型上的一组操作。它通常是对数据的某种抽象,定义了数据的取值范围及其结构形式,以及对数据操作的集合。

作用:①约束变量或常量的取值范围②约束变量或常量的操作

形式定义:抽象数据类型可用(D,S,P)三元组表示

D是数据对象;S是D上的关系集;P是对D的基本操作集。

5.数据结构

数据结构是相互之间存在一种或多种特定关系的数据元素的集合。在任何问题中,数据元素都不是孤立存在的,它们之间存在某种关系,这种数据元素相互之间的关系称为结构。数据结构包括三方面的内容:逻辑结构、存储结构和数据的运算。数据的逻辑结构和存储结构是密不可分的两个方面,一个算法的设计取决于所选定的逻辑结构,而算法的实现依赖于所采用的存储结构。

⚪逻辑结构与存储结构的关系:

  1. 存储结构是逻辑关系的映像与元素本身的映像。
  2. 逻辑结构是数据结构的抽象,存储结构是数据结构的实现

1.1.2数据结构三要素

1.数据的逻辑结构

逻辑结构是指数据元素之间的逻辑关系,即从逻辑关系上描述数据。它与数据的存储无关,是独立于计算机的。数据的逻辑结构分为线性结构非线性结构,线性表是典型的线性结构;集合、树和图是典型的非线性结构。数据的逻辑结构分类如图1.1所示。

线性结构

有且仅有一个开始和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后续。

例如:数组,链表,栈,线性表,队列,哈希表,串。

非线性结构

一个结点可能有多个直接前趋和直接后继。

例如:树,图,堆,哈希表。

①集合

结构中的数据元素之间除“同属一个集合”外,别无其他关系,如图1.2(a)所示。

②线性结构

结构中的数据元素之间只存在一对一的关系,如图1.2(b)所示。

③树形结构

结构中的数据元素之间存在一对多的关系,如图1.2(c)所示。

④图状结构或网状结构

结构中的数据元素之间存在多对多的关系,如图1.2(d)所示。

2.数据的存储结构

存储结构是指数据结构在计算机中的表示(也称映像),也称物理结构。它包括数据元素的表示和关系的表示。数据的存储结构是用计算机语言实现的逻辑结构,它依赖于计算机语言。数据的存储结构主要有顺序存储、链式存储、索引存储和散列存储。

理解:

1.若采用顺序存储,则各个数据元素在物理上必须是连续的;若采用非顺序存储,则各个数据元素在物理上可以是离散的

2.数据的存储结构影响存储空间分配的方便程度。Eg:有人想插队。

3.数据的存储结构影响对数据运算的分配。Eg:想找到第三个人。

①顺序存储

逻辑上相邻的元素存储在物理位置上也相邻的存储单元中,元素之间的关系由存储单元的邻接关系来体现。其优点是可以实现随机存取,每个元素占用最少的存储空间;缺点是只能使用相邻的一整块存储单元,因此可能产生较多的外部碎片。(如图a)

②链式存储

不要求逻辑上相邻的元素在物理位置上也相邻,借助指示元素存储地址的指针来表示元素之间的逻辑关系。其优点是不会出现碎片现象,能充分利用所有存储单元;缺点是每个元素因存储指针而占用额外的存储空间,且只能实现顺序存取。(如图b)

③索引存储

在存储元素信息的同时,还建立附加的索引表。索引表中的每项称为索引项,索引项的一般形式是(关键字,地址)。其优点是检索速度快;缺点是附加的索引表额外占用存储空间。另外,增加和删除数据时也要修改索引表,因而会花费较多的时间。(如图c)

④散列存储

根据元素的关键字直接计算出该元素的存储地址,也称哈希(Hash)存储。其优点是检索、增加和删除结点的操作都很快;缺点是若散列函数不好,则可能出现元素存储单元的冲突,而解决冲突会增加时间和空间开销。

 

3.数据的运算

施加在数据上的运算包括运算的定义和实现。运算的定义是针对逻辑结构的,指出运算的功能;运算的实现是针对存储结构的,指出运算的具体操作步骤

4.基本数字类型与数字编码

【详细内容如文件下载【资源】】!!!

 5.字符编码

【详细内容如文件下载【资源】】!!!

1.1.3总结


 1.2算法和算法评价

1.2.1算法的基本概念

1.算法概念

是对特定问题求解步骤的一种描述,它是指令的有限序列,其中的每条指令表示一个或多个操作。【程序=数据结构(食材)+算法(步骤)】

2.算法描述

  1. 自然语言:英语,中文
  2. 流程图:传统流程图,NS流程图
  3. 伪代码:类语言,类C语言
  4. 程序代码:C语言程序,JAVA语言程序......

3.重要特性

①有穷性。一个算法必须总在执行有穷步之后结束,且每一步都可在有穷时间内完成。

【算法有穷,程序无穷】

确定性。算法中每条指令必须有确切的含义,对于相同的输入只能得出相同的输出

可行性。算法中描述的操作都可以通过已经实现的基本运算执行有限次来实现。

输入。一个算法有零个多个输入,这些输入取自于某个特定的对象的集合。

输出。一个算法有一个多个输出,这些输出是与输入有着某种特定关系的量。

通常,设计一个“好”的算法应考虑达到以下目标:

1)正确性。算法应能够正确地解决求解问题。

2)可读性。算法应具有良好的可读性,以帮助人们理解。

3)健壮性。算法能对输入的非法数据做出反应或处理,而不会产生莫名其妙的输出。

4)高效率与低存储量需求。效率是指算法执行的时间,存储量需求是指算法执行过程中所需要的最大存储空间,这两者都与问题的规模有关。

1.2.2算法效率的度量

算法效率的度量是通过时间复杂度和空间复杂度来描述的。

1.时间复杂度

一个语句的频度是指该语句在算法中被重复执行的次数。算法中所有语句的频度之和记为T(n),它是该算法问题规模n的函数,时间复杂度主要分析T(n)的数量级。算法中基本运算(最深层循环中的语句)的频度与T(n)同数量级,因此通常将算法中基本运算的执行次数的数量级作为该算法的时间复杂度。于是,算法的时间复杂度记为:T(n)=O(f(n))

式中,O的含义是T(n)的数量级,其严格的数学定义是:若T(n)和fn)是定义在正整数集合上的两个函数,则存在正常数C和n0,使得当n≥n0时,都满足0≤T(n)≤Cf(n)。

算法的时间复杂度不仅依赖于问题的规模n,c也取决于待输入数据的性质(如输入数据元素的初始状态)。例如,在数组A[0.…n-1]中,查找给定值k的算法大致如下:

该算法中语句3(基本运算)的频度不仅与问题规模n有关,而且与下列因素有关:

①若A中没有与k相等的元素,则语句3的频度f(n)=n。

②若A的最后一个元素等于k,则语句3的频度f(n)是常数0。

最坏时间复杂度是指在最坏情况下,算法的时间复杂度。

平均时间复杂度是指所有可能输入实例在等概率出现的情况下,算法的期望运行时间。

最好时间复杂度是指在最好情况下,算法的时间复杂度。

一般总是考虑在最坏情况下的时间复杂度,以保证算法的运行时间不会比它更长。在分析一个程序的时间复杂性时,有以下两条规则:

  1. 加法规则:T(n)=T₁(n)+T₂(n)=0(f(n))+0(g(n))=0(max(f(n),g(n))
  2. 乘法规则:T(n)=T₁(n)×T₂(n)=0(f(n))×0(g(n))=0(f(n)×g(n))。

如a,设{a{}、b{}、c{}三个语句块的时间复杂度分别为0(1)、O(n)、O(n²),则

常见的渐近时间复杂度为: 0(1)<0(log₂n)<0(n)<0(nlog₂n)<0(n²)<0(n³)<0(2n)<0(n!)<0(nn)

2.空间复杂度

算法的空间复杂度S(n)定义为该算法所需的存储空间,它是问题规模n的函数,记为:S(n)=0(g(n))

一个程序在执行时除需要存储空间来存放本身所用的指令、常数、变量和输入数据外,还需要一些对数据进行操作的工作单元和存储一些为实现计算所需信息的辅助空间。若输入数据所占空间只取决于问题本身,和算法无关,则只需分析除输入和程序之外的额外空间。例如,若算法中新建了几个与输入数据规模n相同的辅助数组,则空间复杂度为O(n)。算法原地工作是指算法所需的辅助空间为常量,即O(1)。

 

 


1.3迭代与递归

在数据结构与算法中,重复执行某个任务是很常见的,其与算法的复杂度密切相关。而要重复执行某个任务,我们通常会选用两种基本的程序结构:迭代和递归。

1.3.1迭代

「迭代iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段代码,直到这个条件不再满足。

1.for循环

for循环是最常见的迭代形式之一,适合预先知道迭代次数时使用。

以下函数基于for循环实现了求和1+2+…+n,求和结果使用变量res记录。需要注意的是,Python中range(a,b)对应的区间是“左闭右开”的,对应的遍历范围为a,a+1,…,b-1。

此求和函数的操作数量与输入数据大小n成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是这个“线性关系”。相关内容将会在下一节中详细介绍。

2.while循环

与for循环类似,while循环也是一种实现迭代的方法。在while循环中,程序每轮都会先检查条件,如果条件为真则继续执行,否则就结束循环。下面,我们用while循环来实现求和1+2+…+n。

 在while循环中,由于初始化和更新条件变量的步骤是独立在循环结构之外的,因此它比for循环的自由度更高。例如在以下代码中,条件变量i每轮进行了两次更新,这种情况就不太方便用for循环实现。

总的来说,for循环的代码更加紧凑,while循环更加灵活,两者都可以实现迭代结构。选择使用哪一个应该根据特定问题的需求来决定。

3.嵌套循环

我们可以在一个循环结构内嵌套另一个循环结构,以for循环为例:

 

下图给出了该嵌套循环的流程框图。

 

在这种情况下,函数的操作数量与n²成正比,或者说算法运行时间和输入数据大小n成“平方关系”。我们可以继续添加嵌套循环,每一次嵌套都是一次“升维”,将会使时间复杂度提高至“立方关系”、“四次方关系"、以此类推。

1.3.2递归

「递归recursion」是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。

1.:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。

2.:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。而从实现的角度看,递归代码主要包含三个要素

1.终止条件:用于决定什么时候由“递”转“归”。

2.递归调用:对应“递”,函数调用自身,通常输入更小或更简化的参数。

3.返回结果:对应“归”,将当前递归层级的结果返回至上一层。

观察以下代码,我们只需调用函数recur(n),就可以完成1+2+…+n的计算:

虽然从计算角度看,迭代与递归可以得到相同的结果,但它们代表了两种完全不同的思考和解决问题的范式。

·迭代:“自下而上”地解决问题。从最基础的步骤开始,然后不断重复或累加这些步骤,直到任务完成。

·递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。

以上述的求和函数为例,设问题f(n)=1+2+…+n。

·迭代:在循环中模拟求和过程,从1遍历到n,每轮执行求和操作,即可求得f(n)。

·递归:将问题分解为子问题f(n)=n+f(n-1),不断(递归地)分解下去,直至基本情况f(1)=1时终止。

1.调用栈

递归函数每次调用自身时,系统都会为新开启的函数分配内存,以存储局部变量、调用地址和其他信息等。这将导致两方面的结果。

·函数的上下文数据都存储在称为“栈帧空间”的内存区域中,直至函数返回后才会被释放。因此,递归通常比迭代更加耗费内存空间。

·递归调用函数会产生额外的开销。因此递归通常比循环的时间效率更低。

 

在实际中,编程语言允许的递归深度通常是有限的,过深的递归可能导致栈溢出报错。

2.尾递归

有趣的是,如果函数在返回前的最后一步才进行递归调用,则该函数可以被编译器或解释器优化,使其在空间效率上与迭代相当。这种情况被称为「尾递归tail recursion]。

·普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下文。

·尾递归:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无需继续执行其他操作,因此系统无需保存上一层函数的上下文。

以计算1+2+…+n为例,我们可以将结果变量res设为函数参数,从而实现尾递归。

 

尾递归的执行过程如图2-5所示。对比普通递归和尾递归,求和操作的执行点是不同的。 

 

3.递归树 

 

 

1.3.3两者对比

 

 


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

航Hang*

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值