方向导数与梯度

顾名思义,方向导数就是某个方向上的导数。什么是方向

在这里插入图片描述

我们知道:

在这里插入图片描述

下图看出,函数f(x,y)的A点在这个方向上也是有切线的,其切线的斜率就是方向导数。

在这里插入图片描述

下面正式讨论方向导数。

二、方向导数

=====================================================================

设函数z= f(x,y)在点P(x,y)的某一邻域U内有定义,自点P引射线l。设x轴正向到射线l的转角为φ ,并设P’(x +△x,y + △y)为l上的另一点P’∈U。

在这里插入图片描述

|PP’I= ρ=√(△x)^2 +(△y)^2,且△z= f(x+△x,y +△y)- f(x,y),考虑△z/p,当P’沿着l趋于P时,

在这里插入图片描述

上述极限是否存在?如果存在,则称这极限为函数在点P沿方向l的方向导数。

定义:函数的增量f(x + △x,y+ △y)- f(x,y)与PP’两点间的距离ρ=√(△x)2+(△y)2之比值,当P’沿着l趋于P时,如果此比的极限存在,则称这极限为函数在点P沿方向l的方向导数。

记为:

在这里插入图片描述

方向导数计算公式:

在这里插入图片描述

其中φ为x轴到方向l的转角。

三、梯度

===================================================================

定义:设函数f(x, y)在平面区域D内具有一阶连续偏导数,则对每一点P(x^0,y0)∈ D,都可以定出一个向量fx(x0, y0)i十fy(x0, y0)j称为f(x, y)在点P处的梯度,记作gradf(x0, y0)。

梯度是一个矢量,其方向上的方向导数最大,其大小正好是此最大方向导数。

在这里插入图片描述

四、例题解析

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数前端工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Web前端开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:前端)

完整版面试题资料免费分享,只需你点赞支持,动动手指点击此处就可领取了

前端实习面试的套路


回顾项目

往往在面试时,面试官根据你简历中的项目由点及面地展开问答,所以请对你做过的最好的项目进行回顾和反思。回顾你做过的工作和项目中最复杂的部分,反思你是如何完成这个最复杂的部分的。

面试官会重点问你最复杂的部分的实现方法和如何优化。重点要思考如何优化,即使你项目中没有对那部分进行优化,你也应该预先思考有什么优化的方案。如果这部分答好了,会给面试官留下很不错的印象。

重点在于基础知识

这里指的基础知识包括:前端基础知识和学科基础知识。

前端基础知识:html/css/js 的核心知识,其中 js 的核心知识尤为重要。比如执行上下文、变量对象/活动对象(VO/AO)、作用域链、this 指向、原型链等。

学科基础知识:数据结构、计算机网络、算法等知识。你可能会想前端不需要算法,那你可能就错了,在大公司面试,面试官同样会看重学生这些学科基础知识。
你可能发现了我没有提到React/Vue这些框架的知识,这里得说一说,大公司不会过度的关注这方面框架的知识,他们往往更加考察学生的基础。
这里我的建议是,如果你至少使用或掌握其中一门框架,那是最好的,可以去刷刷相关框架的面试题,这样在面试过程中即使被问到了,也可以回答个 7788。如果你没有使用过框架,那也不需要太担心,把重点放在基础知识和学科基础知识之上,有其余精力的话可以去看看主流框架的核心思想。

如果你至少使用或掌握其中一门框架,那是最好的,可以去刷刷相关框架的面试题,这样在面试过程中即使被问到了,也可以回答个 7788。如果你没有使用过框架,那也不需要太担心,把重点放在基础知识和学科基础知识之上,有其余精力的话可以去看看主流框架的核心思想。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值