【大数据安全】大数据安全的挑战与对策&基础设施安全_数据安全面临的挑战图解

一、大数据安全的挑战与对策

(一)数据加密技术

1、对称密码

对称密码的特征是加密密钥和解密密钥相同。对称密码不仅可用于数据加密,也可用于消息的认证,最有影响的对称密码是美国国家标准局颁布的DES/AES算法。对称密码系统的保密性主要取决于密钥的安全性,因此必须通过安全可靠的途径(如信使递送)将密钥送至接收端。

2、密钥管理

如何将密钥安全、可靠地分配给通信对方,包括密钥产生、分配、存储和销毁等多方面的问题统称为密钥管理。

3、非对称密码

非对称密码(公钥密码体制)的特征是加密密钥与解密密钥不同,而且很难从一个推出另一个。两个密钥形成一个密钥对,一个密钥用于加密,另一个密钥用于解密。非对称密码算法基于数学问题求解的困难性,而不再是基于代替和换位方法;另外,非对称密码使用两个独立的密钥,一个可以公开,称为公钥,另一个不能公开,称为私钥。
        两个因素促进了双钥密码体制的产生:一个是密钥管理与分配的问题;另一个是数字签名的需求。双钥密码体制在数据加密、密钥分配和认证等领域都有重要的应用。
        在非对称密码体制中,公钥是可以公开的,私钥是需要保密的。加解密算法都是公开的,用公钥加密后,只能用与之对应的私钥才能解密。

(二)大数据安全与隐私

大数据安全与隐私涉及众多领域,包括数据安全,系统安全和网络安全,数据安全涉及数据加密和隐私保护,系统安全涉及操作系统安全和数据库安全,网络安全涉及身份认证、访问控制和审计技术。 大数据安全的核心技术主要包括加密技术,访问控制和认证机制。

1、基础设施安全

基础设施安全主要体现在分布式计算和数据存储的保护方面。
        一方面,在分布式编程框架下的计算安全性,面临着如何保证分布式数据映射的安全,以及在不可信任的数据映射下如何确保数据安全的挑战。具体包括:计算节点配置错误或篡改导致计算结果错误或重要数据泄露;计算节点间通信的重放攻击、中间人攻击或拒绝服务攻击等;以及伪造计算节点等方面的问题。
        另一方面,在大数据系统中广泛使用的,以NoSQL为代表的,非关系型数据存储的安全性面临挑战。具体表现在:缺少完整性保护;弱认证技术和弱口令,易遭受重放攻击和暴力破解;缺少基于角色的访问控制和授权机制;防注入攻击的方案不成熟等。

2、数据管理安全

数据管理安全是指针对分布式可扩展数据集的数据存储、审计和溯源安全方案。分布式可扩展数据集在大数据系统中广泛应用。由于数据所有者与物理存储的分离,以及不可信、不一致的存储和安全策略等原因,分布式可扩展数据集产生了新的漏洞。主要表现在:数据保密性和完整性无法保证、拒绝服务攻击风险、副本间一致性无法保证、数据篡改存在纠纷和抵赖等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值