Text2SQL技术,即将自然语言查询转换为结构化查询语言(SQL)的技术,正在迅速成为数据库查询的一个关键工具。它使得非技术用户能够通过自然语言与数据库进行交互,极大地提高了数据库操作的便捷性和效率。
接下来分两部分:主流数据集、主流实战方法(SQLCoder + DB-GPT-Hub),一起来深入了解大模型实战:Text2SQL。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取!
一、主流数据集
1、什么是Text2SQL数据集?
Text2SQL数据集是指一类专门用于训练Text2SQL(文本到SQL)模型的数据集合。
Text2SQL数据集通常包含大量的自然语言查询(如问题或指令)和对应的SQL查询语句。这些对构成了模型学习的基础,使模型能够学会将自然语言查询转换为SQL查询。
****
2、Text2SQL数据集有哪些?
Spider、WikiSQL和CHASE等主流Text2SQL数据集提供自然语言查询与SQL查询对应数据,训练和评估模型将自然语言转换为SQL查询的能力。
-
Spider:这是一个跨域的复杂Text2SQL数据集,包含了大量的自然语言问句和对应的SQL查询语句。它旨在测试模型在复杂的、未见过的SQL查询上的性能以及其在新领域的泛化能力。
-
WikiSQL:这是一个大型的语义解析数据集,由大量的自然语句表述和对应的SQL标注构成。它主要用于训练模型学习如何将简单的自然语言查询转换为SQL查询。
-
CHASE:一个跨领域多轮交互Text2SQL中文数据集,包含多个多轮问题组成的列表,以及大量的 <query, SQL>二元组,涉及不同领域的数据库。
二、主流实战方法
基于大语言模型的Text2SQL主流实战方法是什么?
主要包括两种:
(1)基于Text2SQL模型结合业务进行微调;
(2)基于开箱即用的Text2SQL Agent结合业务整合到应用。
1、基于SQLCoder模型,结合业务进行微调
第一步:微调前准备(下载模型和数据集)
- 下载模型:llama3-sqlcoder-8b是一种适用于PostgreSQL、 Snowflake(基于云的数据仓库平台) 的文本到 SQL 生成的强大的语言模型,可与最强大的通用前沿模型相媲美。
- 下载数据集:WikiSQL是一个基于维基百科的语义解析数据集,主要用于自然语言查询到SQL查询的转换任务。它包含了超过8万个(问题,SQL)对,即80,645条自然语言问句及相应的SQL语句,以及24,241张表。
第二步:模型微调(收集业务数据、选择微调策略、训练模型、评估模型)
-
微调数据集: 根据业务需求和数据库架构,收集相关的自然语言查询和对应的SQL语句作为训练数据。
-
选择微调策略: 根据业务需求和数据集的特点,选择合适的微调策略,如基于特定数据库模式的微调、针对复杂查询的微调等。
-
训练模型: 使用微调数据集对SQLCoder模型进行训练,调整模型的参数以优化其在特定业务场景下的性能。
-
评估模型: 在训练过程中,定期评估模型的性能,如准确率、召回率等,以确保微调的有效性。
第三步:模型部署与推理
-
Enter special instructions(输入特殊说明): 明确特殊说明的内容,这可能涉及对某项任务的具体要求、注意事项、优先级调整或其他任何有助于任务执行或结果理解的额外信息。例如:异常处理
-
Enter the database schema(输入数据库模式): 数据库模式(也称为数据库结构或数据库架构)定义了数据库中表、列、关系和其他数据库对象的组织方式。
2、基于开箱即用的DB-GPT-Hub,结合业务整合到应用
DB-GPT是一个 开源的AI原生数据应用开发框架(AI Native Data App Development framework with AWEL(Agentic Workflow Expression Language) and Agents)。
目的是构建大模型领域的基础设施,通过开发多模型管理(SMMF)、Text2SQL 效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单,更方便。
DB-GPT-Hub 是一个利用LLMs实现Text-to-SQL解析的实验项目,主要包含数据集收集、数据预处理、模型选择与构建和微调权重等步骤,通过这一系列的处理可以在提高Text-to-SQL能力的同时降低模型训练成本,让更多的开发者参与到Text-to-SQL的准确度提升工作当中,最终实现基于数据库的自动问答能力,让用户可以通过自然语言描述完成复杂数据库的查询操作等工作。
目前DB-GPT-Hub 已经基于多个大模型打通从数据处理、模型SFT训练、预测输出和评估的整个流程,代码在项目中均可以直接复用。
三、最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓