QWQ-32B 本地私有化部署,性能媲美DeepSeek-R1满血版

一、QWQ-32B 介绍

QWQ-32B是阿里巴巴最新开源的一款新型推理模型,规模仅拥有320亿参数,但在多项基准测试中,性能几乎媲美 DeepSeek-R1 满血版,甚至某些测试中超越了 DeepSeek-R1 满血版

官方提供的评估对比图:

图片

 

从上图可以看出 QwQ-32B表现出色,整体几乎超越 OpenAI-o1-mini,在 AIME24(数学推理) 和 LiveCodeBench(代码评测) 测试集上与DeepSeek-R1满血版 几乎持平,在 LiveBench(混合任务)IFEval(指令遵循)BFCL(函数调用)测试中,均超越 DeepSeek-R1满血版 。但其只有 32B 的参数量,在如此优秀效果的前提下又大幅降低了部署使用的成本。

modelscope 地址:

https://modelscope.cn/models/Qwen/QwQ-32B

huggleface 地址:

https://huggingface.co/Qwen/QwQ-32B

本次本地部署 QWQ-32B 推理优化框架采用 vLLM ,使用 Open-WebUI 交互测试,依赖的版本如下:

torch==2.5.1+cu118
modelscope==1.23.1
transformers==4.49.0
vllm==0.7.2

二、vLLM 部署 QWQ-32B

首先使用 modelscope 下载 QWQ-32B 模型到本地:

modelscope  download  --model="Qwen/QwQ-32B"  --local_dir  QwQ-32B

图片

 

使用 vLLM 读取模型启动API服务。

export CUDA_VISIBLE_DEVICES=0,1

vllm serve "QwQ-32B" \
  --host 0.0.0.0 \
  --port 8060 \
  --dtype bfloat16 \
  --tensor-parallel-size 2 \
  --cpu-offload-gb 0 \
  --gpu-memory-utilization 0.8 \
  --max-model-len 8126 \
  --api-key token-abc123 \
  --enable-prefix-caching \
  --trust-remote-code

关键参数说明:

  • • export CUDA_VISIBLE_DEVICES=0,1 :指定所使用的GPU

  • • dtype: 数据类型,其中 bfloat1616位浮点数,适合 NVIDIA A100 等设备。

  • • tensor-parallel-sizeTensor 并行的数量,当多 GPU 分布式推理时使用,建议和GPU的数量一致。

  • • cpu-offload-gb:允许将部分模型权重或中间结果卸载到 CPU 的内存中,单位为 GB。,模拟 GPU 内存扩展,如果部署的模型大于了显存大小可以设置该参数,但是推理速度会大大下降。

  • • gpu-memory-utilization:设置 GPU 内存利用率的上限。

  • • max-model-len:允许模型最大处理的Token数,该参数越大占用显存越大。

  • • enable-prefix-caching:启用前缀缓存减少重复计算。

图片

 

显存占用情况:

图片

 

如果启动显存不足,可适当调整 gpu-memory-utilization 和 max-model-len 参数,或通过 cpu-offload-gb 将部分模型权重卸载到内存中。

启动成功后,可通过 /v1/models 接口可查看模型列表:

curl http://localhost:8060/v1/models -H "Authorization: Bearer token-abc123"

图片

 

测试API方式交互:

curl http://localhost:8060/v1/chat/completions \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer token-abc123" \
    -d '{
        "model": "QwQ-32B",
        "messages": [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": "你好,介绍一下你自己"}
        ]
    }'

图片

 

三、Open-WebUI 交互测试

连接 QWQ-32B 模型。

图片

 

模型ID 可以留空,会自动从 /v1/models 接口中获取。

保存后,回到对话窗口, 可在左上角选择 QWQ-32B 模型:

图片

 

对话测试

图片

 

图片

 

图片

 

图片

 


 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值