2025年想成为AI工程师,需要掌握这些技能!附学习路线+资料

本文介绍了成为 AI 工程师的详细路线图,包括必要技能、学习资源、项目创意以及如何通过构建实际项目来提升这些技能。原文:Roadmap to Become an AI Engineer[1]

AI 是构建所有技术的新范式。-- Clem Delangue(HuggingFace 联合创始人)

在确定 AI 工程师必将成为下一个重要的技术角色[2]之后,是时候学习如何成为一名 AI 工程师了。

本文将探讨对如下内容:

  • 从软件工程师到 AI 工程师的路线图。
  • 成为 AI 工程师所需的技能。
  • 在发展技能的同时,应该学会使用的工具。
  • 发展这些技能的最佳途径。

让我们先看看路线图!

成为 AI 工程师的路线图 🧭

在这里插入图片描述
Harshit Tyagi 的 AI 工程师路线图

先说第一件事!

目标读者

计划提升 AI 工程技能的程序员/软件工程师/分析师/数据科学家。

由于这是一项核心工程技能,因此需要具备以下先决条件:

  • 对 Python / JS 编程的了解达到中级水平。
  • 理想情况下,必须拥有至少 2-3 个中等复杂度应用程序的编码经验,如使用 Flask 或 Rails 或 Node.js 编写博客应用。
  • 至少可以轻松通过阅读文档来构建项目。
  • 可以使用 VS Code 等 IDE 进行编码。
  • 使用 git 和 GitHub 虽然也很重要,不过可以在项目工作中学习。

路线图分解

如图所示,整个 AI 工程的学习分为三个阶段,在路线图中从左到右,即从初级到中级再到高级。

以下是每个阶段所代表的意义:

  • 初学者(<= 1 个月) – 构建基本应用程序,学习使用 LLM API、为应用程序精心设计提示以及使用开源 LLM。
  • 中级(~ 2 个月) – 深入了解如何使用 RAG(Retreival Augmented Generation)构建更多上下文感知高级应用程序,了解并使用向量数据库,学习使用 LLM 和工具构建代理。
  • 高级(~ 3 个月) – 在掌握构建应用程序之后,学习使用 LLMOps 在生产中部署、优化和管理由 LLM 驱动的应用程序,学习微调预训练模型,以便高效、低成本的适配下游应用程序。

初级技能

  • 了解 LLM 基础知识,只需了解 ChatGPT 的高级工作原理。
  • 学习开发人员提示工程,学习如何编写提示来提高 LLM 的响应速度。
  • 学习从 API 获取数据,学习处理 JSON 数据。
  • 学习调用闭源或开源 LLM 模型、函数调用、传递提示和解析响应。
  • 学会在对话中管理上下文。
  • 学习基于 langchain 创建并自动执行一系列操作。
  • 基于 Gradio 或 Streamlit 实现 POC 并演示基本应用开发。
  • 在 HuggingFace Space 或 Streamlit 云上进行基本部署。
  • 基于 HuggingFace transformer 库支持多模态,即支持生成代码、图像和音频。

中级项目需求

  • 了解向量嵌入和向量数据库。
  • 学习如何在应用中使用向量数据库。
  • 构建 RAG 应用,与知识库聊天。
  • 开发先进的 RAG 流水线,如子问题查询引擎,该引擎可在通过多个数据源后提供响应。
  • 构建代理,迭代工作流程,以完成重大任务。
  • 建立多代理应用,让多个代理共同提供更好的解决方案。
  • 多代理自动化 - Autogen 和 Crew AI
  • 评估 RAG/RAGA 框架。
  • 管理数据库,检索,部署完整应用,版本控制,日志记录以及监控模型行为。

高级项目需求

  • 量身定制针对特定领域知识的响应,如医学研究、金融研究和法律分析,对预训练 LLM 进行微调。
  • 整理数据集并设计(ETL 流水线)流水线,以便对模型进行微调。
  • 评估模型性能并设定基准。
  • LLMOps – 构建包括模型注册、可观测性和自动化测试在内的完整端到端流水线。
  • 构建多模态应用 – 文本和图像混合语义搜索。
  • 构建 SDK、软件包和定制解决方案,以帮助其他开发人员。
  • 基于提示黑客等技术保护 AI 应用,并通过检查漏洞和潜在风险来采取防御措施。

如果你花了足够时间构建应用并调整模型,那技能应该像下面这样进步:

图片

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

### 数据库系统工程师的未来趋势 #### 技术发展背景 在信息技术飞速发展的时代,数据库工程师的角色正在经历深刻的变化。随着大数据、云计算以及人工智能技术的发展,数据库工程师不仅需要掌握传统的关系型数据库技能,还需要适应新兴的技术需求[^1]。 #### 关系型与非关系型数据库并存的趋势 尽管在过去几十中,关系型数据库一直占据主导地位,但在未来的几里,尤其是到2025,非关系型数据库(NoSQL)的重要性将进一步提升。这主要是因为现代应用对灵活性和可扩展性的要求越来越高。例如,MongoDB 和 Redis 这样的非关系型数据库已经在许多场景下成为首选解决方案[^3]。然而,关系型数据库如 MySQL 和 Oracle 仍然会在事务处理和其他结构化数据管理领域保持重要地位[^2]。 #### 新兴技术和工具的影响 至2025,数据库工程师可能需要更加深入地了解以下几方面的内容: - **云原生架构**:越来越多的企业将其数据库迁移到云端,这意味着工程师需具备 AWS RDS、Google Cloud SQL 或 Azure Database 等服务的知识。 - **自动化运维**:通过 DevOps 工具实现数据库部署、监控和优化过程中的高度自动化将是常态。 - **数据分析能力**:除了传统的 CRUD 操作外,能够利用 ELT/ETL 流程进行大规模的数据分析也将变得至关重要。 以下是基于 Python 的一个简单脚本示例,用于连接 MongoDB 并执行基本查询操作: ```python from pymongo import MongoClient def connect_mongodb(): client = MongoClient('mongodb://localhost:27017/') db = client['test_database'] collection = db['employees'] result = collection.find_one({"name": "John Doe"}) return result if __name__ == "__main__": employee_data = connect_mongodb() print(employee_data) ``` 此代码片段展示了如何使用 PyMongo 库来访问存储在本地实例上的 `test_database` 中名为 `employees` 的集合,并检索特定文档的信息。 #### 教育与发展建议 为了应对即将到来的变化,数据库工程师应持续学习最新的行业动态和技术进展。参加在线课程、阅读专业书籍以及参与社区讨论都是有效的途径之一。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值