一文讲清:AI智能体的三大主流思考框架

构建具备自主规划、执行以及适应复杂任务能力的 AI 智能体,关键在于其“思考”能力。AI 智能体思考框架的出现,正是为了赋予 AI 智能体结构化的推理与决策能力。这些框架为 AI 智能体提供了一套完整的方法论,指导其如何理解目标、分解任务、运用工具、处理信息,并依据环境反馈来调整自身行为。

在这里插入图片描述

一个优秀的思考框架,能够显著增强 AI 智能体的鲁棒性、提升其效率以及拓展解决问题的泛化能力。接下来,我们将深入探讨3种主流的 AI 智能体思考框架,比如:CoT、ReAct 和 Plan-and-Execute,分析它们的设计理念以及适用场景。

下文详细剖析之。

AI 智能体3种主流的思考框架剖析

AI 智能体思考框架一、CoT 思维链

思维链(Chain of Thought,CoT)是提升大语言模型(LLM)处理复杂推理任务能力的关键技术。其核心在于引导大模型在给出最终答案之前,先生成一系列结构化的中间推理步骤,这就好比模拟人类解决问题时的逐步思考过程。借助这种方式,LLM 能够更深入地理解问题结构,有效分解复杂任务,并逐步推导出解决方案。这些显式的思考步骤为大模型的决策过程带来了透明度和可解释性,便于用户理解和调试。不过,这种方法的代价是生成冗长的思考链条会增加计算成本和处理延迟。

在这里插入图片描述

随着 DeepSeek R1 的深度思考模式验证了思维链对推理能力的显著提升效果,各大模型厂商纷纷推出了支持慢思考的模型。比如:腾讯推出了 Hunyuan T1 模型,阿里千问推出了 QwQ 模型。Anthropic 官方还开源了 Sequential Thinking MCP,它通过精心设计的提示词工程,使得原本不支持慢思考的大模型也能实现类似的推理过程。凭借其通用性和易用性,该工具目前已成为使用频率最高的MCP Server(数据来源:https://mcp.so/ranking)。

在这里插入图片描述

AI 智能体思考框架二、ReAct(Reasoning and Action)

虽然 CoT 提升了大模型的推理能力,但其推理过程主要基于大模型内部知识,缺乏与外部世界的实时交互,这可能导致知识过时、产生幻觉或错误传播。ReAct(Reasoning and Action)框架通过结合“推理”(Reasoning)与“行动”(Action),有效解决了这一问题。它使大模型在推理过程中能够与外部工具或环境互动,获取最新信息、执行具体操作,并根据反馈调整后续步骤。这种动态交互赋予了大模型“边思考边行动、边观察边调整”的能力,其核心运作机制可以概括为思考(Thought)→ 行动(Action)→ 观察(Observation)的迭代循环:

image-20250604102635819

思考(Thought):模型基于当前任务目标和已有的观察信息进行逻辑推理和规划。它会分析问题、制定策略,并决定下一步需要执行的动作(比如:调用哪个工具、查询什么信息)来达成目标或获取关键信息。

行动(Action):根据“思考”阶段制定的计划,大模型生成并执行具体的行动指令。这可能包括调用外部 API、执行代码片段、查询数据库或与用户交互等。

观察(Observation):大模型接收并处理“行动”执行后从外部环境(比如:工具的返回结果、API 的响应、用户的回复)中获得的反馈信息。这些观察结果将作为下一轮“思考”的输入,帮助模型评估当前进展、修正错误,并迭代优化后续的行动计划,直至任务完成。

图片

AI 智能体思考框架三、 Plan-and-Execute

Plan-and-Execute 是对标准 ReAct 框架的拓展与优化,专为处理复杂、多步骤任务而设计,其将 AI 智能体的工作流程划分为两个核心阶段:

第一、规划阶段

AI 智能体对接收到的复杂任务或目标进行整体分析与理解,生成一个高层次的计划,将原始任务分解为一系列更小、更易管理的子任务或步骤。这种分解有助于在执行阶段减少处理每个子任务所需的上下文长度,且计划通常是一个有序的行动序列,指明了达成最终目标的关键环节。该计划可提前呈现给用户,让用户在执行开始前对计划步骤提出修改意见。

第二、执行阶段

计划制定完成后(可能已采纳用户意见),**AI 智能体进入执行阶段,按照规划好的步骤逐一执行每个子任务。在执行每个子任务时,**AI 智能体可采用标准的 ReAct 循环来处理具体细节,比如:调用特定工具、与外部环境交互或进行更细致的推理。执行过程中,AI 智能体会监控每个子任务的完成情况,若子任务成功则继续下一个;若失败或出现意外情况,****AI 智能体可能需重新评估当前计划,动态调整计划或返回规划阶段进行修正。此阶段同样可引入用户参与,让用户对子任务的执行过程或结果进行反馈,甚至提出调整建议。

在这里插入图片描述

与标准 ReAct 相比,Plan-and-Execute 模式的主要优势在于:

1、结构化与上下文优化

预先规划将复杂任务分解为小步骤,使 AI 智能体行为更有条理,有效减少执行各子任务时的上下文长度,提升处理长链条任务的效率和稳定性。

2、提升鲁棒性

将大问题分解为小问题,降低单步决策的复杂性,若某个子任务失败,影响范围相对可控,也更容易进行针对性的调整。

3、增强可解释性与人机协同

清晰的计划和分步执行过程使 AI 智能体的行为更容易被理解和调试,更重要的是,任务的分解为用户在规划审批和执行监控等环节的参与提供了便利,用户可对任务的执行步骤提出修改意见,从而实现更高效的人机协作,确保任务结果更符合预期。

这种“规划 - 执行”的思考框架,因其在复杂任务处理上的卓越表现,已成为 AI 智能体领域广泛采用的核心策略之一。比如:3 月份涌现并广受关注的通用 AI 智能体项目,比如: ManusOWLOpenManus 等,均采用了这种方式对用户任务进行拆分和执行,充分展现了其普适性和高效性。

图片

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值