深入理解上下文工程(Context Engineering):从入门到精通

想象这样一个场景:你正在用ChatGPT帮助分析一份50页的市场调研报告。开始时,AI的回答精准到位,但随着对话深入,你发现它开始"健忘"——忘记了报告中的关键数据,甚至开始给出与前面矛盾的建议。这不是AI模型本身的问题,而是遇到了上下文管理的挑战。

这个看似简单的问题,实际上揭示了现代AI应用中一个核心技术难题:如何让AI在有限的"记忆空间"中,始终关注最重要的信息?这就是上下文工程要解决的根本问题。

在这里插入图片描述

一、基本概念和相关技术

什么是上下文工程(Context Engineering)?

上下文工程是一种通过精心设计输入信息来优化大语言模型性能的技术。简单说,就是给AI提供"恰到好处"的背景信息,让它能准确理解任务并给出高质量的回答。它是提示词工程(Prompt Engineering)的进化和扩展,专注于如何更好地利用模型的上下文窗口。

就像我们向他人求助解决问题时,你会怎么做?你不会突然抛出一个问题,而是会先解释背景情况、说明你的需求、甚至举几个例子。上下文工程就是这样一门技术——它教会我们如何与AI"对话",让AI更好地理解我们的意图。

在这里插入图片描述

为什么上下文工程(Context Engineering)如此重要?

回答这个问题前,我们先理解问题的本质:AI的"记忆"是如何工作的?

大语言模型的"记忆"本质上是一个固定大小的文本窗口。就像人类的工作记忆一样,这个窗口有容量限制。当新信息进入时,旧信息就可能被"挤出去"。

[系统提示] + [历史对话] + [当前输入] = 总上下文

当总上下文超出模型的上下文窗口时,问题就出现了。

在这里插入图片描述

让我们看一个具体例子。假设你要让AI帮你写一份技术方案:

第1轮对话:你:帮我写一个电商网站的技术架构方案AI:好的,我来为你设计一个现代化的电商架构...第10轮对话后:你:前面提到的数据库方案具体怎么实现?AI:抱歉,能否重新描述一下你的项目需求?

AI"忘记"了前面的讨论,这就是上下文管理失效的典型表现。

这就是为什么需要上下文工程,因为它提出了一个系统性的解决思路:不是让AI记住所有信息,而是让它在每个时刻都能获得最重要的信息,也就是上下文窗口的概念。

## 【会话历史摘要】第1-3轮:确定微服务架构和技术栈选型第4-6轮:讨论数据库架构,决定主从+分库分表第7-9轮:设计缓存策略和消息队列方案第10轮:当前讨论分库分表具体实现## 【关键决策记录】- 数据库:MySQL 8.0 + MyCAT分库分表中间件- 分片策略:用户维度分库,订单按时间分表- 缓存:Redis Cluster,商品缓存+用户会话缓存- 队列:RocketMQ,订单、库存、支付异步处理## 【待解决问题清单】1. ✅ 整体架构设计2. ✅ 数据库选型3. 🔄 分库分表实现细节(当前讨论)4. ⏳ 性能监控方案5. ⏳ 灰度发布策略

上下文工程(Context Engineering)相关技术有哪些?

**通过刚才的介绍,上下文工程的基础是上下文窗口的概念,即每个AI模型都有一个"记忆容量"限制,就像人的短期记忆一样,只能同时处理有限的信息。这里涉及几个关键技术。

(1)检索增强生成(RAG)

让AI能够从庞大的知识库中"查找"相关信息,就像给AI配备了一个智能图书馆。当你问一个专业问题时,系统会先检索相关资料,然后将这些信息连同你的问题一起提供给AI,大大提升了回答的准确性和深度。

(2)上下文学习(In-Context Learning)

通过在输入中提供示例,AI能够快速"学会"新的任务模式。比如,如果你想让AI写出特定风格的邮件,你只需要提供几个示例,AI就能模仿这种风格处理新的邮件需求,无需重新训练模型。

(3)动态上下文管理

解决了长对话中的信息管理问题。想象一下客服场景,随着对话的进行,重要信息可能被淹没在冗长的对话历史中。智能的上下文管理系统会识别并保留关键信息,丢弃不相关的内容,确保AI始终能关注到最重要的信息。核心策略:滑动窗口 + 关键信息保留,这个与计算机视觉中大场景下识别小地物异曲同工,通过滑动窗口来提取特征。

The New Skill in AI is Not Prompting, It's Context Engineering

二、工作原理与应用场景

上下文工程(Context Engineering)工作原理是什么?

先看一个例子,当我们问AI:“我的订单什么时候到?”

没有上下文工程:AI仅能看到“我的订单什么时候到?”这一句话,回答:“我不知道你的订单信息,请提供订单号。”

有了上下文工程:AI能看到完整的背景信息,包括提问者身份(张先生)、购买时间(昨天)、购买物品(手机)等, 给出精准回答:“张先生您好,您昨天购买的手机订单正在配送中,预计今天下午3点送达。”

这背后发生了什么?

Context Engineering

1. 语义搜索阶段当你说"我的订单",系统会把这句话转换成数字向量(Vector Embeddings),然后在用户数据库中搜索语义相似的内容。这就像给每段文字都贴上"语义标签",让系统能理解你真正想问什么。

2. 信息检索与匹配系统通过语义相似度计算,自动找到相关信息:

(1)识别出你是张三(通过登录信息)

(2)找到你最近的订单记录

(3)匹配到物流信息

(4)检索配送时间预估

3. 上下文构建(RAG框架)这是关键步骤,系统把检索到的信息组装成完整上下文:

用户:张三,手机139xxxx1234最近订单:2024年7月7日购买iPhone 15订单状态:已发货,快递单号SF1234567890预计送达:今天下午3点用户问题:我的订单什么时候到?

4. 注意力机制处理AI模型接收到这个丰富的上下文后,通过注意力机制自动关注最相关的部分(订单状态、配送时间),然后生成准确回答。

通过上述工作流程,上下文工程将原本AI只能看到"我的订单什么时候到?"这11个字,转化为AI能看到完整的用户档案、订单历史、物流状态等几百个字的背景信息。就像给AI配了一个全能助手,随时提供相关资料。

这就是上下文工程的威力——让每次对话都变成"知情对话"而不是"盲目问答"。

Context Engineering - What it is, and techniques to consider — LlamaIndex -  Build Knowledge Assistants over your Enterprise Data

上下文工程(Context Engineering)应用场景有哪些?

1. 代码生成

在代码生成场景中,开发者面临的最大挑战是 简单的需求描述往往无法让AI生成理想的代码。 传统方式下,你可能只是告诉AI"帮我写一个登录功能",结果得到的代码虽然功能正确,但与项目风格格格不入。

而通过上下文工程,我们可以为AI提供项目的技术栈信息、团队的代码风格规范、相关的业务逻辑说明,甚至现有代码的关键片段作为参考。这样AI生成的代码不仅功能正确,还能完美融入项目整体架构,保持代码风格的一致性。

2. 教育辅导

在教育领域,上下文工程帮助打造真正个性化的学习体验。系统会智能分析 学生的学习历史、当前知识水平和学习目标,然后动态构建个性化的教学上下文。

比如对于一个数学基础薄弱的学生,AI会选择更基础的知识点、提供循序渐进的学习方法建议,并加入鼓励性的话语。而对于学霸型学生,AI则会推荐更有挑战性的内容和高效的学习策略。这样的AI导师不仅能准确回答知识问题,更能像真正的老师一样,根据每个学生的特点提供量身定制的学习指导。

这种个性化程度是传统在线教育很难达到的,真正实现了"因材施教"的教育理念。

Why Context Engineering Matters More Than Prompt Engineering | by  MKWriteshere | Jun, 2025 | Towards AI

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值