深入理解AI检索增强:RAG、DeepResearch 和 DeepSearch 的核心差异

近年来,随着生成式AI的兴起,出现了一系列提升信息检索和内容生成效果的新技术和工具。其中,**DeepResearch(深度研究)、Deep Search(深度搜索)和RAG(检索增强生成)**是三个经常被提及的概念。它们都旨在改进AI对信息的处理能力,但各自的侧重点和实现方式有所不同。本文将深入解析这三者的定义、技术原理、典型应用场景,并比较它们的异同,帮助读者更好地区分和理解这三个概念。

1. DeepResearch(深度研究)

定义与概述: DeepResearch通常指由人工智能驱动的深度研究助手,能够自主地在网络上进行多步骤的调研,并将搜索到的信息进行分析和综合,最终生成结构完整、内容详实的报告。OpenAI对Deep Research的描述是:“一种可以独立为你完成工作的代理——你只需给出提示,ChatGPT就会查找、分析并综合数百个在线资源,生成相当于研究分析师水平的全面报告”。类似地,Perplexity等AI助手也提供Deep Research功能,号称“当你提出深度研究问题时,Perplexity会执行数十次搜索,阅读数百篇来源,并对资料进行推理,自主提供一份全面的报告”。可以说,DeepResearch是一种报告生成系统,它以用户的查询为输入,利用大型语言模型(LLM)作为代理,迭代地搜索和分析信息,最终输出一份详尽的报告。

在这里插入图片描述

技术原理: DeepResearch的核心是让LLM充当自主代理,执行复杂的研究流程。其典型流程包括以下步骤:

  1. 问题拆解与研究规划:

    面对复杂的用户查询,系统首先会将其分解为一系列更小、更易处理的子任务,制定详细的研究计划。例如,对于“分析某新兴市场的竞争格局”这样的查询,DeepResearch可能会拆解为“市场规模与增长”“主要竞争对手及产品”“消费者趋势”等子问题。有些系统会将拟定的计划呈现给用户确认,用户可以根据需要调整关注点。

  2. 信息检索与分析:

    在明确计划后,LLM代理会调用工具(如搜索引擎、网页浏览插件等)来自主检索信息。它会智能地决定哪些子任务可以并行执行、哪些需要按顺序进行,并在每一步对获取的信息进行理解和推理,以决定下一步行动。这一过程往往是迭代和循环的:模型可能根据当前发现提出新的子问题,或者发现信息不足时进行补充搜索,直到认为已收集到足够的资料。OpenAI的Deep Research工具在训练中采用了强化学习(RLHF)来优化其在复杂浏览和推理任务上的表现,使其能够更好地完成这种多步骤调研。

  3. 综合与报告生成:

    当模型判断已经收集了充分的信息后,就进入综合阶段。它会将零散的信息进行整合和批判性评估,提炼出关键主题和发现,并按照逻辑结构组织成报告。在生成报告时,模型会交叉验证不同来源的信息,识别可能的矛盾或不一致之处,并通过多次自我检查来提高内容的清晰度和准确性。最终输出的报告通常包含结构化的章节、要点总结以及引用来源,以方便读者查阅和验证。

值得一提的是,DeepResearch系统往往具有**“思维链”**展示功能,用户可以看到AI在研究过程中的思考步骤和中间结果。例如,谷歌的Gemini Deep Research在界面上提供了一个“思考面板”,向用户展示模型已经学到了哪些信息、下一步打算做什么。这种透明化的设计有助于用户了解AI的推理过程,并在必要时进行干预或调整。

典型应用场景: DeepResearch适用于需要深入分析和综合的复杂任务,特别适合那些以往需要人类研究人员花费大量时间浏览资料、撰写报告的场景。以下是一些典型应用:

  • 市场调研与竞争分析:

    企业战略人员可以利用DeepResearch快速收集行业报告、新闻和竞品信息,生成市场趋势分析或竞争对手分析报告。例如,询问“当前电动汽车市场的主要参与者和各自优劣势是什么?”,DeepResearch会自动检索行业数据、公司官网和媒体报道,综合出一份结构清晰的分析报告。

  • 学术研究辅助:

    学生或研究人员在撰写论文时,可借助DeepResearch进行文献综述和背景调研。它能跨多个来源收集相关研究成果、统计数据和观点,帮助用户快速了解某一课题的全貌。例如,输入“人工智能在医疗影像诊断中的应用现状”,DeepResearch可能会检索学术论文、行业白皮书和新闻报道,汇总当前的技术进展、应用案例和挑战。

  • 专业报告与决策支持:

    在金融、法律、政策研究等领域,DeepResearch可用于生成数据详实、有引用依据的专业报告。例如,金融分析师可以让其调研“某上市公司的财务表现与行业对比”,DeepResearch会抓取财报数据、行业分析和新闻评论,产出一份包含数据图表和结论的分析报告。决策者则可以利用这类AI助手获取多角度信息,为战略决策提供参考。

  • 个人深度查询:

    对于普通用户,DeepResearch也可以用于高价值的信息决策。例如,消费者在购买大件商品(汽车、房产等)前,可以让AI帮忙调研不同品牌型号的评价、价格趋势和用户反馈,从而做出更明智的选择。又如,写作者或自媒体人在创作前,可以借助DeepResearch来收集背景资料、统计数据和案例,以支撑内容的准确性和丰富性。

总的来说,DeepResearch的优势在于自动化地完成繁琐的信息搜集和整合工作,将原本可能耗费数小时甚至数天的调研压缩到几分钟内完成。它生成的报告通常结构严谨、内容详实,并附有来源引用,方便用户追溯核实。不过,需要注意的是,目前DeepResearch仍处于发展早期,其输出并非完美无缺,有时可能出现事实错误或推理偏差。因此,用户在使用这类工具时应保持审慎,对关键结论最好再通过权威渠道交叉验证。

在这里插入图片描述

2. Deep Search(深度搜索)

定义与概述: Deep Search(深度搜索)这一术语在不同语境下有不同含义,但通常是指利用人工智能对信息进行更深入、更全面的检索,以获取比传统搜索引擎更精准或更详尽的结果。与常规搜索仅返回相关网页列表不同,Deep Search倾向于理解用户查询的深层意图,并在更广或更深的信息空间中进行挖掘,有时还能直接给出综合后的答案。例如,微软在2023年底为必应搜索引入了“Deep Search”功能,用于对最复杂的查询提供更相关、更全面的答案。IBM的Deep Search项目则是利用AI来收集、转换和整理大型文档集合(如专利、科研论文),让那些过于专业或零散的信息也能被有效检索到。简单来说,Deep Search强调**“深入”**:既包括对查询语义的深层理解,也包括对信息源的深度挖掘,以满足用户复杂的信息需求。

在这里插入图片描述

技术原理: Deep Search的实现通常结合了高级搜索算法自然语言处理技术,其核心目标是提升检索的相关性和全面性。以下是Deep Search涉及的一些关键技术原理:

  • 语义理解与查询扩展:

    Deep Search系统往往能够理解用户查询背后的意图,而不仅仅匹配字面关键词。例如,在必应的Deep Search中,GPT-4模型会将用户的简短查询扩展为更全面的描述,涵盖理想结果应包含的各个方面。这种查询扩展有助于搜索引擎更准确地把握用户需求。对于有歧义的查询,Deep Search还能生成多种可能的解释,并分别进行扩展,从而覆盖不同的意图。

  • 广域搜索与结果聚合:

    为了“深度”挖掘信息,Deep Search可能会扩大检索范围,访问比常规搜索更多的网页或数据。例如,必应的Deep Search在处理复杂查询时,会对网络进行更广泛的遍历,获取通常在普通搜索结果中不出现的相关页面。它还会自动改写查询的不同变体进行搜索,以覆盖查询的各个侧面。据报道,必应的Deep Search每次查询考虑的网页数量是常规搜索的十倍之多,以找到更具针对性和信息量的结果。在企业或科研场景中,Deep Search可能指向内部的文档库专业数据库,对其中的海量非结构化文本进行索引和搜索。例如IBM的Deep Search会从公开和私有来源收集数据,将PDF等非结构化文档转换为统一的JSON格式,并利用先进的NLP和计算机视觉算法从中提取信息,最终构建可搜索的知识图谱。

  • 结果排序与摘要:

    在获取了大量相关结果后,Deep Search系统会通过多种信号对结果进行重新排序和筛选,以确保最相关、最可靠的信息排在前面。这些信号包括:内容与查询主题的匹配度、信息的详尽程度、来源的可信度和权威性、内容的时效性,以及受欢迎程度等。经过深度排序后,系统可能将结果以精炼的列表直接答案的形式呈现给用户。例如,在必应Deep Search中,用户会看到一个精心挑选的结果列表,其中每个结果都高度契合查询需求,甚至可能附有AI生成的摘要或对比分析,以帮助用户快速获取答案。

需要强调的是,Deep Search并不一定完全取代传统搜索,而是作为增强功能存在。例如,必应的Deep Search目前是一项可选功能,针对复杂问题提供更深入的探索,而一般查询仍会返回常规的快速结果。这是因为深度搜索往往需要更长时间和更多计算资源(必应的Deep Search可能耗时多达30秒),因此只在用户确实需要时启用。

典型应用场景: Deep Search适用于用户有复杂、模糊或高度专业化的信息需求时。以下是一些典型应用场景:

  • 复杂问答与信息整合:

    当用户的问题涉及多个方面或需要综合多来源信息时,Deep Search能发挥作用。例如,询问“不同国家的客户忠诚度计划是如何运作的?”这样的问题,常规搜索可能返回零散的资料,而Deep Search可以理解用户需要比较不同国家、不同行业的积分奖励机制,并自动扩展查询、检索多国资料,最终给出结构化的对比答案。再比如,法律或医学领域的复杂问题,用户可能希望得到涵盖背景、现状和不同观点的详尽解答,Deep Search可以从海量文献中筛选出相关内容并整合成易于理解的答案。

  • 专业领域的信息检索:

    在科研、专利、商业情报等专业领域,Deep Search可以帮助用户挖掘深层信息。例如,研究人员想了解某技术领域最近的专利动态,使用Deep Search可以在专利数据库中进行语义搜索,不仅找到标题包含关键词的专利,还能发现内容相关但标题不明显的专利文件。IBM的Deep Search项目就专注于科学发现场景,通过对大量科研论文和专利进行AI处理,让科研人员能够搜索到那些“过于具体以至于普通工具难以处理”的信息。类似地,商业分析人员可以用Deep Search在行业报告和新闻中查找特定市场趋势的细节,而不必逐篇阅读所有文档。

  • 个性化和长尾查询:

    Deep Search还擅长处理一些长尾的、个性化的查询。例如,用户可能问“我应该如何准备一次跨洲自行车旅行?”这样的问题涉及装备、路线、安全等多方面知识,且可能没有现成的标准答案。Deep Search可以综合旅游博客、论坛问答、专业指南等各种来源,给出全面的建议。再如,记者调查一个小众事件时,Deep Search可以发掘一般搜索引擎未覆盖的资料,如旧新闻文章、学术论文中的提及或社交媒体讨论,从而为报道提供更丰富的背景。

总的来说,Deep Search的价值在于提升检索结果的相关性和全面性,让用户在面对复杂问题时更容易找到所需信息。它结合了AI对语言的理解和对海量数据的处理能力,使得信息获取从“大海捞针”变得更为高效。然而,Deep Search也有局限:由于依赖复杂的AI模型和大规模计算,其响应速度相对较慢,实现和维护成本较高。此外,对查询意图的理解仍可能出现偏差,在歧义或非常冷门的问题上偶尔会给出不相关的结果。因此,目前Deep Search通常作为传统搜索的补充,用于特定场景下的深度信息挖掘。

3. RAG(检索增强生成)

定义与概述: RAG(Retrieval-Augmented Generation,检索增强生成)是一种将信息检索生成式模型相结合的AI架构。简单来说,RAG在回答用户问题或生成内容时,会先从外部知识库中检索相关资料,然后将这些资料提供给大型语言模型,由模型结合检索到的信息生成最终答案。这种方法让生成式AI能够“查资料”后再作答,从而提高回答的准确性和可靠性。RAG的理念可以类比为考试时允许学生“开卷”:模型不再仅依赖训练时记住的知识(闭卷),而是可以在回答问题时参考外部的“书本”或数据库(开卷)。通过这种方式,RAG试图解决大型语言模型的两大痛点:一是知识可能过时或不准确,二是模型有时会“胡编”(幻觉)答案。通过引入检索,RAG让模型回答建立在最新、可验证的事实之上。

图片

技术原理: RAG系统的基本工作流程可以分为两个主要阶段:

  1. 检索阶段(Retrieval):

    当用户提出一个查询或请求时,系统首先利用检索模块从外部知识源中查找与该查询相关的信息片段。这里的外部知识源可以是互联网上的网页、企业内部文档库、专业数据库、电子书等等。检索通常基于语义相似性:系统会将用户的问题转换成向量表示,并在预先建立的向量数据库中查找嵌入向量最相似的文档片段。现代RAG系统常用向量搜索引擎向量数据库来高效地执行这一步,它能将海量文档预先编码为向量并存储,查询时通过向量相似度快速召回最相关的若干文档。除了向量检索,也可能结合传统的关键词检索和一些重排序模型,以提高召回内容的相关性。总之,检索阶段的目标是找到最相关、最可靠的背景资料,为后续的生成提供依据。

  2. 生成阶段(Generation):

    在获得检索结果后,RAG系统会将检索到的内容与用户的原始查询一起送入大型语言模型,由模型生成回答。模型在生成过程中,会同时参考用户的问题和从外部检索到的资料,从而将答案建立在具体事实的基础上。这相当于给模型提供了额外的上下文,模型可以引用这些上下文中的信息来回答问题。例如,当被问及“某药物的副作用有哪些?”,如果检索到了该药物的说明书或医学文献片段,模型就可以从中提取副作用列表并组织成自然语言回答。由于有外部资料作为支撑,模型生成的内容会更加准确,也更有据可依。许多RAG系统还会在生成答案的同时记录引用来源,这样用户不仅得到答案,还能查看答案所依据的原始资料。这种可追溯性大大提高了AI回答的可信度。

需要指出的是,RAG中的检索和生成两个阶段并非截然分离,有时会根据需要进行多次迭代。例如,在复杂对话中,模型可能一次检索的信息不足以回答问题,系统可以再次检索更多资料或针对子问题进行检索,然后再生成答案(这被称为“多跳检索”或“迭代RAG”)。此外,一些RAG系统还会对检索到的信息进行过滤和摘要,只将最相关的部分提供给模型,以减少冗余和噪声对生成的影响。

典型应用场景: 由于RAG能够将LLM的强大生成能力与外部知识库结合,它在许多需要准确回答或内容生成的场景中都有应用。以下是RAG的一些典型应用:

  • 企业知识问答与客服:

    RAG非常适合构建企业内部的问答系统或智能客服。例如,在IT支持领域,可以将公司的产品手册、常见问题解答(FAQ)和技术文档建立索引,当员工或客户提问时,系统先检索相关文档,再由LLM生成详尽准确的解答。这样客服机器人就能回答各种具体问题而不会“编造”答案。DoorDash等公司已经部署了RAG驱动的客服聊天机器人,在配送员遇到问题时,系统会先从内部知识库中检索相关解决方案,再由模型生成回复,从而确保回答符合公司最新政策且准确无误。

  • 专业领域的智能助手:

    在法律、医疗、金融等专业领域,RAG可以充当专家助手,帮助专业人士快速查找和应用知识。例如,律师在处理案件时,可使用RAG系统检索相关法律条文、案例和司法解释,然后让模型根据这些资料生成法律分析或答辩要点。医生或医学研究人员可以用RAG查询最新的医学研究文献、临床试验数据,以辅助诊断决策或研究设计。RAG确保了回答所依据的信息是最新的、权威的,从而提高专业决策的可靠性。

  • 内容创作与总结:

    RAG也可用于内容生成场景,帮助用户撰写文章、报告或进行总结。例如,当需要撰写一篇关于某主题的文章时,RAG系统可以先检索互联网或内部文档获取相关素材,然后由LLM根据这些素材进行内容组织和撰写。这类似于有一个智能写作助手,会先替你搜集资料再下笔。一些写作工具已经开始结合RAG,让用户在写作过程中随时查询资料并插入引用。另外,在文本摘要方面,RAG可以从长篇文档中检索关键段落,再由模型生成摘要,从而提高摘要的准确性和涵盖度。

  • 个性化对话与推荐:

    结合用户个人数据的RAG可以实现更个性化的AI对话。例如,在CRM系统中,将客户的历史交互记录、购买偏好等作为外部知识,当客户咨询时,系统检索该客户的相关资料,然后生成针对性的回复或推荐。这样AI助手就能根据每个用户的具体情况提供定制化的信息,提升用户体验。

总的来说,RAG通过“检索+生成”的范式显著提升了AI回答的准确性和可信赖性。它让大型语言模型能够动态地获取最新知识,而不必每次都依赖训练时固化的信息。同时,由于引入了外部知识,模型“胡编”答案的概率也大大降低。对于企业和开发者而言,RAG还降低了持续训练模型的成本——只需要更新知识库中的文档,而无需重新训练整个模型,就能让AI掌握新信息。当然,RAG也面临一些挑战,例如如何确保检索到的内容质量、如何避免检索偏差、以及如何在海量数据中快速找到最相关的信息等。但随着向量数据库和检索算法的不断改进,RAG正变得越来越成熟,在各行各业的AI应用中扮演着愈发重要的角色。

4. 三者的区别与对比

现在,我们已经分别了解了DeepResearch、Deep Search和RAG的概念和特点。接下来,我们将从技术原理应用场景功能侧重等方面对三者进行比较,以明确它们之间的区别和联系。

  • 技术原理方面:

    DeepResearch本质上是一种自主代理式的LLM应用,它将LLM作为执行复杂任务的代理,通过多轮的搜索、分析、规划和综合来产出结果。它通常结合了工具使用(如调用搜索引擎、浏览器)和链式推理,使AI能够模拟人类研究者的工作流程。Deep Search则更偏向于搜索技术的增强,它利用AI(尤其是LLM)来改进信息检索的过程,包括对查询的语义理解、扩展以及对结果的深度挖掘和排序。Deep Search本身并不生成内容,而是优化检索结果,将更相关的信息呈现给用户或下游系统。RAG则是一种模型架构,它将检索模块与生成模型集成在一起:在回答问题时,先检索外部知识再由LLM生成答案。可以说,RAG关注的是**“如何让生成模型访问外部知识”,而DeepResearch关注的是“如何让AI自动完成研究任务”,Deep Search关注的是“如何让搜索更深入、更智能”**。

  • 应用场景方面:

    DeepResearch适用于复杂的研究型任务,需要产出详尽报告或分析结论的场景。例如市场调研、学术综述、专业报告撰写等,这些任务通常涉及广泛的信息收集和综合分析,DeepResearch能够自动化地完成这些繁琐步骤。Deep Search则适用于信息获取型任务,特别是当用户的问题复杂或模糊,需要高质量、全面的搜索结果时。比如复杂问答、专业数据库搜索、个性化长尾查询等,Deep Search可以帮助用户在信息海洋中精准定位所需内容。RAG的应用场景最为广泛,凡是需要基于外部知识进行回答或内容生成的地方都可以使用RAG。典型的如企业内部问答、客服聊天机器人、智能写作助手、专业领域的决策支持等。可以认为,RAG提供了一种通用框架,而DeepResearch和Deep Search则是在特定方向上对RAG思想的延伸和强化:DeepResearch延伸了“生成”的深度(产出完整报告),Deep Search强化了“检索”的深度(获取更相关全面的信息)。

  • 功能侧重方面:

    DeepResearch的功能侧重在于自动化的深度分析与综合。它不仅检索信息,还对信息进行推理判断、归纳总结,最终输出结构化的见解。因此DeepResearch通常以报告、分析结果等形式呈现,强调结论的完整性和逻辑性。Deep Search的功能侧重在于提升检索结果的质量。它不一定直接给出最终答案,而是提供更相关、更丰富的中间结果供用户参考。在用户界面上,Deep Search可能体现为一个增强的搜索引擎,返回精炼的结果列表或摘要。RAG的功能侧重在于提高生成内容的准确性和有据性。它通过引入外部知识,让AI回答建立在可靠来源之上,从而减少错误和幻觉。RAG通常集成在对话或内容生成系统中,用户可能不会直接感知到检索过程,但会发现AI的回答更准确、更有依据,甚至附有引用来源。

为了更直观地比较三者,下表总结了DeepResearch、Deep Search和RAG在关键维度上的区别:

比较维度DeepResearch(深度研究)Deep Search(深度搜索)RAG(检索增强生成)
核心目标自主完成复杂调研,生成详尽报告提供更相关、全面的搜索结果,深入挖掘信息结合外部知识生成准确答案,降低模型幻觉
技术原理LLM代理执行多步搜索、分析和综合,链式推理利用LLM理解查询意图,扩展检索范围和变体,深度排序结果检索模块+生成模型,先从知识库检索相关资料,再由LLM生成回答
输出形式结构化报告或分析结论,包含要点、数据和引用来源精炼的搜索结果列表,可能附带AI生成的摘要或答案要点自然语言回答或生成内容,通常基于检索到的资料,可提供引用来源
典型应用市场调研、学术研究辅助、专业报告撰写、竞争分析等复杂问答、专业领域信息检索、个性化长尾查询、深度信息挖掘等企业知识问答、智能客服、法律/医学助手、内容创作、个性化对话等
优势自动化完成繁琐研究,节省时间;输出详尽且有条理,可媲美人类分析提高搜索结果相关性和全面性,满足复杂查询需求;利用AI理解意图,减少人工筛选负担答案更准确可信,基于权威资料;可提供来源引用,便于验证;模型无需重新训练即可获取新知识
局限计算成本高,耗时长;可能出现事实错误或推理偏差,需人工审核响应速度较慢,资源消耗大;对歧义查询可能理解不准依赖检索质量,检索不准则答案受影响;需维护外部知识库,实现复杂度较高

表:DeepResearch、Deep Search 和 RAG 的对比总结

从以上对比可以看出,这三者并非彼此孤立,而是互有关联、互为补充的。DeepResearch可以被视为一种端到端的RAG应用:它内部大量使用了检索(搜索网页)和生成(撰写报告)的技术,只是在此基础上增加了任务规划和多步推理的能力。Deep Search则为RAG提供了更强大的“检索”环节支持,通过Deep Search获取的高质量结果,可以进一步提升RAG生成答案的准确性和深度。反过来,RAG的思想也渗透在Deep Search中——许多Deep Search系统在呈现结果时,会利用LLM对检索到的信息进行总结或生成直接答案,这实际上就是一种检索增强的生成过程。因此,我们可以把这三者放在一个谱系中来理解:RAG是基础理念(检索+生成),Deep Search强化了检索侧DeepResearch强化了生成侧并增加了代理逻辑。随着技术的发展,这三者的界限可能会越来越模糊,融合成为更加强大的智能信息处理系统。

总的来说,DeepResearch、Deep Search和RAG分别代表了AI在信息处理领域的不同演进方向:一个侧重于自主研究,一个侧重于智能检索,一个侧重于知识融合生成。理解它们的区别和联系,有助于我们在实际应用中选择合适的工具和技术,以满足不同的需求。在不久的将来,这些技术的进一步结合有望产生更智能的AI助手,能够真正像人类专家一样,为我们提供深入、准确且可靠的信息服务。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

大模型全套学习资料展示

自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

图片

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!

01 教学内容

图片

  • 从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!

  • 大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

02适学人群

应届毕业生‌: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

image.png

vx扫描下方二维码即可
在这里插入图片描述

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!

03 入门到进阶学习路线图

大模型学习路线图,整体分为5个大的阶段:
图片

04 视频和书籍PDF合集

图片

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

图片

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
图片

05 行业报告+白皮书合集

收集70+报告与白皮书,了解行业最新动态!
图片

06 90+份面试题/经验

AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)图片
在这里插入图片描述

07 deepseek部署包+技巧大全

在这里插入图片描述

由于篇幅有限

只展示部分资料

并且还在持续更新中…

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值