自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(495)
  • 收藏
  • 关注

原创 原生 Agentic 基座模型——GLM-4.5体验!

给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。没有现成的汽车模型,GLM-4.5使用立方体和圆组装了一个"汽车",下方还有"修改颜色"、"播放动画"、"更换模型"三个功能。翻译成人话:以前的模型是“我写稿,你排版”;

2025-08-01 11:41:44 552

原创 阿里闪电入局Agent Infra!智能体新基建亮相WAIC,“超级大脑”开箱即用

大模型时代,AI基建的重要性已经不言而喻。前有马斯克19天狂组10万块H100,后有扎克伯格挖人不忘大堆算力,誓要首家上线1GW+超算集群……围绕“”、“”的好戏,在全球舞台上可谓是连番上演。刚刚在上海落幕的WAIC 2025,同样未能“免俗”。并且我们还发现,。就拿当下最热的Agent领域举例。的概念,已经开始被最敏锐的厂商所捕捉。并且呈现出的还是大洋两岸两大云巨头同时发力的景象——

2025-08-01 11:05:49 501

原创 AI科普:全面了解LLM上下文工程(一):从提示词到上下文工程

从最早的提示词工程,到思维链、思维树、再到具备实际行动能力的 Function Calling,我们已经走过了大语言模型交互方式的几个重要阶段。但这还只是开始。随着上下文信息越来越复杂,我们该如何有条不紊地组织这些内容?怎样才能让模型理解“我想让你做的事”。在下一篇中,我们将继续深入——聊聊“现代上下文的结构化技巧”,以及构建真正智能 AI 系统背后的“上下文工程”本质。如何学习AI大模型?“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

2025-07-30 11:51:36 784

原创 GLM-4.5技术博客:原生融合推理、编码和智能体能力

我们正式介绍两个新的 GLM 系列成员:GLM-4.5 和 GLM-4.5-Air——我们最新的旗舰模型。GLM-4.5 拥有 3550 亿总参数和 320 亿激活参数,而 GLM-4.5-Air 拥有 1060 亿总参数和 120 亿激活参数。两者都旨在将推理、编码和智能体能力统一到一个模型中,以满足快速增长的智能体应用日益复杂的需求。GLM-4.5 和 GLM-4.5-Air 都是混合推理模型,提供:用于复杂推理和工具使用的思考模式,以及用于即时响应的非思考模式。

2025-07-30 11:34:54 757

原创 开源coze-studio和coze-loop安装&简单使用

有人说Coze开源后,之前开源智能体的王者Dify危险了,那我倒感觉也未必,毕竟人家都开源2年多了,用户基数很庞大,大家用的也挺好,尤其海外市场玩的也很溜,人家也不怕再来一个,哪怕是出自字节的明星产品Coze,反而我感觉字节开源的晚了。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

2025-07-29 11:50:40 1195

原创 GPT-5:革命性AI的双刃剑

给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!GPT-5的出现,无疑是一个重磅消息,目前处于热议阶段,每个人的看法都不同,就如“一千个人眼中有有一千个哈姆雷特”一样,在你的心中是怎么评价GPT-5的呢?欢迎在评论区发表您的见解。截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。

2025-07-29 11:46:53 897

原创 从DeepSeek-V3到Kimi K2:八种现代 LLM 架构大比较

给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!Qwen3的密集模型采用了较深的架构(更多Transformer块),具有更多的层,而 Llama 3 是一种更宽的架构,具有更多的注意力头。Qwen3 的内存占用较小,但生成速度较慢。截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。

2025-07-26 11:34:18 949

原创 LoRA+Qwen3=文本分类新王炸!

面对文本分类任务(557 类)的挑战,尝试了三种不同的方案,最终 Lora 微调 Qwen3 模型脱颖而出,实现了约 65% 的三级分类准确率(有提升空间)。01文本分类任务,利用训练数据,构建分类模型,实现文本的多级分类。类别标签分为三级:“类别 1_类别 2_类别 3”,且标签呈树状结构。一级类别 11 类,二级类别 104 类,三级类别 557 类。数据格式为:“[{"text":text,"label":类别1_类别2_类别3},...]”02。

2025-07-26 11:18:01 606

原创 手把手安装教程!实测免费代码神器 Qwen Code,干翻 Google、Claude?

给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

2025-07-24 10:52:03 1242

原创 利用大模型构建骨架材料知识图谱及其应用 - 北京工大&华东理工等

使用Qwen2-72B模型将摘要文本转换为包含逻辑关系的JSON格式。模型的任务和输出格式在提示中定义。

2025-07-24 10:41:15 549

原创 八大LLM架构大比较总结:从DeepSeek-V3->qwen3->Kimi K2看LLM架构设计

根据我的个人经验,考虑到其小巧的体积,它的性能确实非常出色。这与 Gemma 2 类似,但仍然值得强调,因为它不同于(1)原始 Transformer 中使用的 Post-Norm(“你只需要注意力”),(2)由 GPT-2 推广并在之后的许多其他架构中使用的 Pre-Norm,以及(3)我们之前看到的 OLMo 2 中的 Post-Norm 风格。总而言之,DeepSeek-V3 是一个拥有 6710 亿个参数的庞大模型,在发布时,其性能优于其他开放权重模型,包括 405B 的 Llama 3。

2025-07-23 11:01:27 982

原创 关于智能体(AI Agent),不得不看的一篇总结(建议收藏)

AI智能体,也称为人工智能代理,是一种模拟人类智能行为的人工智能系统,其核心引擎通常是大模型(LLM)。AI智能体能够感知环境、做出决策和执行任务,以实现特定目标。与传统人工智能相比,AI智能体具有自主性、适应性和交互性,能在复杂多变的环境中独立运作。AI智能体不仅能高效处理已知任务,还能灵活应对未知环境。比如,传统机器人只能按预设程序执行任务,而AI智能体可以根据环境变化自主调整策略,完成复杂的工作流程。

2025-07-23 10:25:47 813

原创 实测Agent自动搞定全套分析,数据分析师的噩梦来了?

总的来说,办公小浣熊也是一款没有盲目地去追求“通用全能”,而是选择了一个现有大模型做得不够好、但用户需求又非常刚性的领域——复杂办公和数据分析——并把它做到了极致。对普通用户来说,能免费用到这样强大的生产力工具,无疑是一件好事。强烈建议大家去试试。如何学习AI大模型?“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

2025-07-22 10:26:49 825

原创 如何使用知识图谱和向量数据库实现 Graph RAG -分步教程(下篇)

•向量数据库适合快速启动应用程序,处理无结构数据时表现优越。•知识图谱通过确保数据的准确性和提供更高的控制力,帮助提高搜索结果的质量。•向量数据库和知识图谱的结合,能够过滤无关信息,从而得到更加精准的搜索结果。如何学习AI大模型?“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

2025-07-22 10:20:59 1027

原创 【Dify+deepseek+MCP】Agent助你效率开挂:打造个人股票交易助理(五)定期运行并发送结果

给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。到这里我们对于股票助手的改造就告一段落了,在这个思路之上,大家可以按照个人的需求,再逐步地对他进行知识的扩充、丰富更多的数据接口、改写prompt完善分析的过程等等!

2025-07-21 15:03:46 1887

原创 万字长文讲解如何搭建用于开放目标检测的工作流

若用户请求检测的类别(如特定花卉或新型电子设备)超出检测器的识别能力,那么无论视觉语言模型如何进行推理修正都无济于事——因为现有流程仅将 VLM 用于对初始检测结果的审核与优化。由于视觉语言模型(VLM)能审阅整个带箭头标注的图像,并理解每个杯身印刷的文字内容,它能自动过滤无关的杯子,仅保留符合查询要求的预测结果。至此,我们已完成首个关键环节的实现:通过识别查询语句中的目标对象,将其标准化并预处理为最适合开放词汇目标检测器(open-vocabulary object detector)处理的格式。

2025-07-21 11:44:04 814

原创 Qwen3-Embedding 全揭秘:从技术到服务,打造高效AI产品的关键路径

1.简介:什么是 Qwen3-Embeddinga.简介:Qwen3-Embedding 是阿里巴巴通义实验室推出的最新一代嵌入模型(Embedding Model),专为处理文本语义表示而设计。它能够将文本转换为高维向量(Embedding),广泛应用于语义搜索、推荐系统、聚类分析、文本匹配等下游任务。b.核心原理i.基本架构:Qwen3-Embedding 是基于 Qwen3 的语言模型进行构建,结合 instruction 机制与 MoE 设计,构建出的一种高效、多任务支持的文本嵌入模型。

2025-07-18 11:14:00 997

原创 一篇文章带你搞懂AI Agent(智能体),赶紧收藏~

AI Agent指的是有能力主动思考和行动的智能体,能够以类似人类的方式工作,通过大模型来“理解”用户需求,主动“规划”以达成目标,使用各种“工具”来完成任务,并最终“行动”执行这些任务。

2025-07-18 10:54:54 1400

原创 RAG彻底爆了!一文读懂其架构演进及核心要点

由于作者水平有限,若相关理解有误请以实际为准。当前由于模型能力的瓶颈,Agent系统存在极大的不确定性,在Agentic RAG系统中,在大的层面引入Agent对实际业务落地不太可取,可考虑在某个小环节中引入,如Generation问答补充(在基于检索出的文档后,动态给定一些tools让其优化回答效果)。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

2025-07-17 14:37:30 934

原创 长上下文在大语言模型检索增强生成(RAG)中的作用:全面综述

未来,随着长上下文LLMs的进一步发展,RAG系统将在更多领域实现“深度知识服务”——从法律领域的全案智能分析到金融领域的实时风险预警,长上下文不仅是技术指标的提升,更是LLMs从“文本生成工具”向“智能知识助手”进化的关键一步。长上下文LLMs通过支持全文档输入,使RAG系统能够保留信息的完整性。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

2025-07-17 14:09:36 771

原创 深度解析RAG优化策略的五大核心范式与路径

为了验证MultiHop-RAG的效果,我们需要准备专门的多跳问答数据集,这些数据集包含复杂的查询、多跳的真实答案以及支撑证据,用于评估RAG系统从多个来源检索和推理信息的能力。开源的RAGFlow作为新一代检索增强生成框架,从v0.16.0开始,已经支持在知识库上构建知识图谱,让您能够跨知识库中的多个文件构建统一的图谱,当新上传的文件开始解析时,生成的图谱将自动更新,实际上可以理解为RAGFlow已经对GraphRAG能力进行了集成,我们可以通过RAGFlow快速体验GraphRAG的应用效果。

2025-07-17 14:07:22 731

原创 120页深度报告,搞懂今年大模型和应用的现状与未来

2025 年,AI 产业正在以一种前所未有的速度迭代向前,技术突破不断涌现,市场格局也在迅速发生变化。Innovation Endeavors 合伙人 Davis Treybig 近期发布了一份 AI 产业深度报告《State of Foundation Models》(2025),报告从模型、技术、应用、智能体、市场、公司架构、未来机会七个维度出发,非常全面且深入地剖析了 AI 产业当下的发展现状及未来趋势,对 AI 产业的现状与未来趋势进行了全景式扫描,非常具备参考价值。

2025-07-16 12:03:26 1064

原创 1068万预算!中国足协大模型项目招标,用AI技术驱动足球革命

这不仅是一次技术采购,更是一次深刻的战略转型,旨在为积弊已久的中国足球,尤其是青训体系和国家队建设,注入科学决策的“最强大脑”。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!: 为每一位入选的青少年球员建立独一无二的成长数据档案。根据公告,项目旨在深入挖掘和分析海量“多模态足球数据”,这绝非简单的统计,而是一个复杂的、由人工智能驱动的分析生态系统。

2025-07-12 10:53:31 337

原创 专业级AI股票分析提示词

那以下这些PDF籍就是非常不错的学习资源。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!现在,通过构建高质量的提示词,任何投资者都能利用AI这一强大工具,执行堪比专业水准的系统化分析,从而做出更明智的投资决策。:指出该股票适合哪类投资者(例如:寻求长期增长的价值投资者、能承受高波动的投机者、寻求稳定股息的保守型投资者等),并说明建议的投资时间周期。

2025-07-12 10:50:36 1078

原创 从零开始学 Dify - 一文搞懂 Dify 消息队列与任务调度的设计精髓

Dify 采用事件驱动架构来处理消息和任务,通过多层次的事件系统和任务调度机制,实现了高效、可扩展的异步处理能力。本文档将详细介绍 Dify 中的消息事件和 Task 实现机制,帮助理解系统的核心架构。# 消息事件# 应用事件# 租户事件。

2025-07-11 11:40:19 1055

原创 OpenAI最强对手出现!马斯克发布Grok-4,性能碾压Claude 4两倍!

就在昨天,马斯克的Grok4终于正式发布了。Grok3.5跳票。老马的直播还迟到1h也是没谁了,全世界都被耍猴。最贵版本,300美刀,可以思考大几十分钟,一般人也用不上。直播表示,Grok-4“能够进行超人级别的推理”(It can reason at a superhuman level!),并且在多项高难度基准测试上实现了对现有顶尖模型的碾压。Artificial Analysis 获得早期访问权限并发布了 Grok 4 基准测试,数据着实恐怖。今天的循环回到了XAI~

2025-07-11 10:58:26 945

原创 一篇文章带你弄懂RAG五种分块策略,技术原理、优劣对比与场景选型之道!

RAG通过结合检索与生成技术,依赖其高效检索算法、多模态融合能力及系统级优化,解决了基础大模型在企业内部应用的局限性,例如通过RAG技术对接企业内部知识库,支持知识动态更新与实时交互,显著降低了大模型的幻觉风险,无需微调训练模型,低成本适配企业垂直领域的应用场景,在数据安全与可控性方面,可加入权限控制逻辑,确保敏感信息仅在授权范围内使用,同时通过引用标注实现可追溯性。利用LLM的语义理解能力,动态划分文本,保证了分块语义的准确性,但这种分块方法对算力要求最高,对时效性与性能也将带来挑战。

2025-07-10 11:33:32 500

原创 RAKG:文档级检索增强知识图谱构建 - 上海人工智能实验室等

摘要随着基于知识图谱的检索增强生成(RAG)技术如GraphRAG和Pike-RAG的兴起,知识图谱在提升大型语言模型(LLMs)推理能力方面的作用日益凸显。然而,传统的知识图谱构建(KGC)方法面临复杂实体消歧、严格模式定义和跨文档知识整合不足等挑战。本文聚焦于自动文档级知识图谱构建任务。提出了一种文档级检索增强知识图谱构建(RAKG)框架。RAKG从文本块中提取预实体,并利用这些预实体作为RAG的查询,有效解决了LLMs中的长上下文遗忘问题,并降低了共指消解的复杂性。

2025-07-09 11:58:43 659

原创 用ChatGPT搞定工作?你不学AI,有人正用AI替你

今天我们来聊一个扎心问题:AI到底是敌人,还是工具?我们为什么要了解AI?这是很多人心里的疑问。也许你嘴上说着“不焦虑”,但看到ChatGPT写稿、PPT一秒生成、AI建模、AI编曲、AI剪视频……别急,我们今天就来聊透这事儿。

2025-07-09 11:44:14 995

原创 什么是Agent?工作原理是什么?以及如何评测Agent

大家有没有想过这样的问题:“已经有大模型了,为什么还要做Agent?大模型不是也能得到Agent中得到的结果吗?“Agent与大模型之间具体有什么区别呢?首先让我们先从定义上看看这两者有什么区别:大模型是基于深度学习、拥有数十亿至数千亿参数的人工智能模型,能通过海量数据学习复杂模式,具备文本生成、逻辑推理等多任务处理能力,是当前 AI 领域的核心突破方向。所以从上述来看,大模型只提供任务方法,具体行动还是需要人去做执行;

2025-07-08 10:53:04 1940

原创 一文搞懂上下文工程(Context Engineering):从“什么都不知道“到“无所不知“

上下文窗口。

2025-07-08 10:35:01 818

原创 Biomni:斯坦福大学团队打造首个生物医药领域的AI智能体,从设计实验、数据分析到药物发现全自动搞定。附最新 PPT。

生物医学研究支撑了我们对人类健康和疾病理解、药物发现以及临床护理的进步。然而,随着复杂实验室实验的增长、大型数据集、众多分析工具和广泛文献的出现,生物医学研究越来越多地受到重复和分散的工作流程的制约,这些工作流程减缓了发现速度并限制了创新,这突显出需要一种根本性的新方法来扩展科学专业技能。在这里,我们介绍了Biomni,这是一种旨在自主执行各种生物医学子领域研究任务的通用生物医学人工智能代理。

2025-07-08 10:24:43 689

原创 FinStat2SQL:用于财务报表分析的Text2SQL工作流,精度达到61.33%,优于GPT-4o-mini

尽管大型语言模型取得了进步,但text2sql仍然面临许多挑战。在金融领域,不同的金融实体和国家之间的数据库设计和财务报告布局差异很大,这使得text2sql更具挑战性。本文提出了FinStat2SQL,一个轻量级的text2sql工作流,支持对财务报表进行自然语言查询。它针对evas等本地标准进行了定制,在多代理设置中结合了大型和小型语言模型,用于实体抽取、SQL生成和自我纠正。我们建立了一个特定领域的数据库,并在一个合成的QA数据集上评估模型。

2025-07-04 10:42:24 860

原创 RAG进阶之路Advanced RAG, Graph RAG 以及Agentic RAG

大型语言模型(LLM)彻底改变了人工智能领域。从撰写文章到总结研究,它们以前所未有的方式模仿人类语言。但在这智能表象之下,潜藏着一个顽固缺陷:LLM的能力受限于训练数据。它们不知道昨天发生的事,有时甚至会凭空捏造信息。那么我们如何解决这个问题?检索增强生成(RAG)——这个框架通过将外部知识检索与语言生成相结合,赋予LLM实时获取信息的能力。但RAG技术本身也在进化:从最初简单的关键词检索,如今已发展为驱动自主智能体AI系统的核心力量。

2025-07-04 10:30:41 862

原创 使用fastapi-mcp改造fastapi服务为MCP服务供智能体使用案例

“ 使用MCP协议就可以解耦智能体和工具的开发,使得其可配置。”对智能体来说除了大模型之外,最重要的就是其工具;在之前的开发过程中,使用函数作为智能体的工具,但由于每家模型服务商的标准都不一样,因此开发起来相对比较麻烦,并且无法标准化;因此才有了MCP(模型上下文协议)的出现,目的就是统一智能体工具的开发,其作用就类似于USB接口。通过MCP协议就可以把智能体开发和工具开发完全拆分开来,智能体是智能体,工具是工具;在需要的时候,直接把工具加入到智能体中即可使用,通过可插拔的方式,可以达到快速改造智能体功能的

2025-07-03 11:53:14 939

原创 论文浅尝 | KNOWFORMER: 重新审视基于Transformer的知识图谱推理模型(ICML2024)

本文提出了一种基于Transformer架构的新型知识图谱推理方法KnowFormer,其核心在于构建兼具高表达力与可扩展性的注意力机制。该方法创新性地通过消息传递神经网络设计查询函数和值函数,分别生成蕴含丰富语义的键与值表征,同时引入高效注意力计算策略以降低模型复杂度。实验结果表明,KnowFormer在知识图谱的转换式推理与归纳式推理任务中均显著优于现有主流基线方法,验证了其在结构感知建模与计算效率上的双重优势。

2025-07-03 11:27:06 981

原创 万字长文深入浅出教你优雅开发复杂AI Agent

AI Agent 的发展正处于爆发前夜,从最初的 LLM 聊天机器人,到具备规划、记忆、工具调用能力的智能体,再到多 Agent 协作的复杂生态,整个行业正在经历一场范式转变。本文系统梳理了 AI Agent 的核心理念、主流协议(MCP、A2A)、思考框架(CoT、ReAct、Plan-and-Execute),并结合 Golang 生态下的 Eino、tRPC-A2A-Go 等工程化框架,结合实际例子详细讲解了如何优雅地开发、编排和观测复杂的智能体系统。

2025-07-02 11:32:51 1000

原创 现在的大学生,不用大模型才是异类

大学现在学的就是掌握 ChatGPT 的程度了。在北美的顶尖大学校园里,人工智能完成作业、写论文已经成为一种常态。近日,New York Magazine 旗下 Intelligencer 发表了一篇题为「每个人都在大学里作弊」的专题报道,其中从 Chungin「Roy」Lee 开发作弊软件的故事开始,谈到了美国大学对 ChatGPT 等 AI 工具的广泛使用乃至滥用的情况。

2025-07-01 21:40:52 1669

原创 从workflow到ReAct提升AI Agent智能化水平

本号之前文章中介绍了用Dify工具实现的针对故障拍照进行智能检索的运维神器,这个案例中Agent是使用典型的workflow方式配置出来的,“先进行OCR,然后检索知识,最后生成答案”这个执行步骤是我们预先定义好的,包括网上很多Agent文章中描述大多也和我们这个案例类似,但这似乎和AI Agent的标准定义还是有差距,我们先随便找个大模型,问问AI Agent的标准定义大概如下:AI Agent(智能体)是一种‌具备自主决策与执行能力‌的智能实体,能够通过感知环境、动态调整行为以实现预设目标。

2025-07-01 21:33:51 709

原创 最新12种GraphRAG技术全面评测

6月有两篇关于GraphRAG技术评测的最新论文,涉及12种GraphRAG技术:HippoRAG、HippoRAG2、LightRAG、Fast-GraphRAG、RAPTOR、MGraphRAG、KGP、GraphRAG 、G-Retriever、DALK、ToG、GFM-RAG是一种扩展的 RAG 范式,通过构建图结构来组织背景知识,其中节点代表实体、事件或主题,边代表它们之间的逻辑、因果或关联关系。它不仅检索直接相关的节点,还会遍历图以捕获相互连接的子图,从而发现隐藏的模式。提出的。

2025-06-30 11:42:10 1017

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除