- 博客(1352)
- 收藏
- 关注
原创 大模型喂饭教程:用Ollama+RAGflow打造私有知识库
Ollama 是一个本地运行的大语言模型(LLM)工具平台,允许用户在本地设备上运行和管理大模型,而无需依赖云服务。它支持多种开源模型,并提供了用户友好的接口,非常适合开发者和企业使用。首先,从 Ollama 官网 下载安装包,并按照提示完成安装。Windows下搜索ollama,然后点击启动Ollama 提供了几个简单易用的命令,基本功能如下:拉取模型并运行llama pull 具体的模型,这里以deepseek为例运行模型并对话,–verbose参数可以显示token信息信息如下:资源占用情况:
2025-05-06 15:44:21
561
原创 AI大模型技术学习之——大模型常用架构以及技术难点
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-05-06 15:40:43
668
原创 深度分析AI大模型的核心能力和典型应用领域,企业如何选择最合适的落地场景和服务?
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-05-06 15:31:20
787
原创 coze平台保姆级教程,手把手教你创建属于你的AI Agent
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-05-06 15:18:00
629
原创 点击领取:2025最新最全AI大模型资料包:学习路线+书籍+视频+实战+案例...
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-05-05 14:43:44
404
原创 大模型专业术语LLM、MCP、EMB是什么?技术原理是什么?通俗易懂,带你更好地理解AI
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-05-05 12:02:11
714
原创 2025年AI Agent全面爆发!深入了解Agent的核心能力与应用场景
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-05-05 12:00:43
830
原创 大模型技术:这篇文章带你彻底搞懂MCP,从原理到实战,看完你就是LLM大师!
MCP (Model Context Protocol) 代表了 AI 与外部工具和数据交互的标准建立。MCP 的本质它是一个统一的协议标准,使 AI 模型能够以一致的方式连接各种数据源和工具,类似于 AI 世界的"USB-C"接口。MCP 的价值它解决了传统 function call 的平台依赖问题,提供了更统一、开放、安全、灵活的工具调用机制,让用户和开发者都能从中受益。使用与开发对于普通用户,MCP 提供了丰富的现成工具,用户可以在不了解任何技术细节的情况下使用;
2025-05-05 11:56:07
987
原创 手把手带你从零开始学习大模型AI Agent,看完你也能成为大师!
这篇文章梳理了AI 智能体的核心概念与 AGI 的关系大模型如何赋能核心模块构成多智能体协作机制主流开发框架,以及面临的三大挑战。最后通过 DeepSeekMine +多智能体打造 DeepResearch 案例,展示了只需一句话指令,多个智能体自动完成资料搜索、内容总结、报告撰写与质量检查,实现“理解 → 执行 → 优化”的任务闭环。这是我们DeepSeekMine打造DeepResearch的开发思路,会逐步迭代开发包括在DeepSeekMine里,为大家提供服务。
2025-05-05 11:53:49
606
原创 新手小白也能看懂的大模型训练篇,通俗易懂
学习专业知识(Continue Pretrain )→ 做练习题(Fine-tune )→ 老师指导纠错(RLHF)→评估效果(Model Evaluation)。评估标准的设计有很多种,我们后面展开再聊,但有一个认知很重要:评估标准对于客观评价模型能力至关重要,这个阶段就像软件测试一样,决定上线后的质量。模型训练是一件高成本的事情且不是必须的,如果你是做一个Copilot(助手 ) ,提示词+工作流 是一个高性价比的选择。如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!
2025-05-04 10:00:00
809
原创 大模型时间:从下载到成功运行Qwen2.5大模型,保姆级教程
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-05-04 10:00:00
900
原创 从大模型部署到企业级服务,十种主流LLM服务引擎和工具介绍与对比解析
部署场景:从个人开发环境到企业级生产系统,选择合适的部署方案。性能需求:根据延迟、吞吐量等指标选择最适合的技术框架。资源约束:考虑硬件资源限制,选择合适的优化策略。开发难度:评估团队技术能力,选择适合的实现方案。维护成本:考虑长期运维和升级的技术投入。通过深入理解各个框架的技术特点和适用场景,开发团队可以根据具体需求选择最适合的部署方案,实现大语言模型的高效服务。如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!
2025-05-04 08:00:00
925
原创 假如普通人从5月开始快速系统的学习大模型,按这个学习路径两周就能学会!
时间段学习内容实践任务第 1-2 天Transformer 和 LLM 基础理解 Transformer 结构,阅读 GPT 和 BERT 的论文第 3-4 天深入 LLM 架构和模型训练搭建环境,实验微调 BERT 或 GPT-2第 5-6 天模型优化与推理加速使用量化、蒸馏等方法优化模型性能第 7-8 天LLM 在 NLP 中的应用实现文本生成、问答系统、情感分析等任务第 9-10 天高效模型微调与大模型部署使用 LoRA、PEFT 等微调方法;了解部署技术。
2025-05-03 10:45:00
1427
原创 大模型企业落地为什么这么难?遇到的挑战及解决方案
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-05-03 10:15:00
803
原创 2025零基础想入行AI大模型,从这四个方面下手,事半功倍!
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-05-03 09:30:00
441
原创 想入行AI大模型?先学会大模型必须要知道的30个概念,新手小白也能看懂!
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-05-02 10:00:00
919
原创 大模型两种主流的微调方法——SFT(监督式微调)和RLHF(基于人类反馈的强化学习)
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-05-02 10:00:00
695
原创 AI大模型应用开发必知概念:Agent智能体、LLM、RAG、提示词工程
大语言模型是一类基于深度学习的人工智能模型,旨在处理和生成自然语言文本。通过训练于大规模文本数据,使得大语言模型能够理解并生成与人类语言相似的文本,执行各类自然语言处理任务。LLM的训练及使用LLM能够理解并生成与人类语言相似的文本,执行各类自然语言处理任务,具体可应用场景包括而不限于文本生成、机器翻译、摘要生成、对话系统、情感分析等。其具有强大的泛化能力、能够处理多种任务。LLM的训练LLM的训练过程分为预训练和微调两个阶段。预训练阶段。
2025-05-02 08:30:00
543
原创 斯坦福多模态交互 Agent 综述:Agent AI 集成及其技术挑战
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-05-01 10:00:00
923
原创 大模型干货:一篇文章带你彻底搞懂MCP,从原理到实战,看完你就是LLM大师!
MCP (Model Context Protocol) 代表了 AI 与外部工具和数据交互的标准建立。MCP 的本质它是一个统一的协议标准,使 AI 模型能够以一致的方式连接各种数据源和工具,类似于 AI 世界的"USB-C"接口。MCP 的价值它解决了传统 function call 的平台依赖问题,提供了更统一、开放、安全、灵活的工具调用机制,让用户和开发者都能从中受益。使用与开发对于普通用户,MCP 提供了丰富的现成工具,用户可以在不了解任何技术细节的情况下使用;
2025-05-01 09:30:00
663
原创 AI大模型干货:提示词工程原理——提示学习(prompt learning)
简单来说,不论是预训练-微调,还是提示词都是为了让模型表现的更好,为了发挥大模型庞大知识能力的一种方式,而提示词是一种成本相对较低的方式。而对使用者来说,使用第三方模型是根据Token进行计费的,而更长的提示词意味着更多的Token,因此怎么写出一个简短又高质量的提示词就是一个需要考虑的问题。如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-05-01 09:15:00
781
原创 AI大模型:从概念到应用,普通人如何上手?
站在2025年的节点回望,LLM的进化已远超技术范畴,它正在重塑人类认知世界的维度。无论是DeepSeek推动的开源运动,还是百度、阿里构建的产业生态,这场变革的本质是将智能转化为可编程的基础设施。对于普通人而言,无需深究数学细节,但需理解:掌握与大模型协作的能力,将成为数字时代的新读写算。图:RAG技术实现动态知识增强(RAG完整管道示意图)“工具决定边界,认知定义高度。” 在这场人机共舞的新浪潮中,愿每个人都能找到自己的支点。如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!
2025-05-01 09:00:00
587
原创 部署大型语言模型(LLM)时究竟需要多少GPU显存?来看看这几个例子
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-04-30 10:00:00
1013
原创 大模型工程师百宝箱:14个类别、120+大模型库,带你成为大模型开发大师!
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-04-30 09:30:00
647
原创 Qwen团队:Qwen3本周正式发布,推理+非推理能力首次合二为一
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-04-30 09:15:00
1161
原创 大模型小白必备知识:CheckPoint(检查点)如何实现模型“训练存档”
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-04-30 08:45:00
734
原创 大模型干货:构建大模型 Agent 应用 6个框架对比剖析
尽管每个 Agent 应用框架都拥有出色的功能,但鉴于生成式人工智能领域的迅猛发展,这些框架也在持续进行更新与优化。企业在选择框架时,应主要依据自身的具体需求,例如业务场景、应用类型、安全性要求、性能表现以及其他相关技术细节。如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-04-29 09:30:00
1107
原创 大模型干货:7张图带你搞懂多agent代理的7种设计模式
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-04-29 09:00:00
682
原创 大模型MCP极简入门:用 Python 打造你的第一个 MCP 工具
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-04-29 08:15:00
961
原创 基于 MCP 的 AI 应用技术架构全景视图,终于有人说清楚了!
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-04-28 10:00:00
797
原创 MCP协议在大模型交互标准化中的创新应用,从原理到开发,5分钟搞懂!
1.1 MCP 介绍MCP(Model Context Protocol,模型上下文协议) 起源于 2024 年 11 月 25 日 Anthropic 发布的文章:Introducing the Model Context Protocol。可以用“AI 扩展坞”来比喻 MCP 在 AI 领域的作用。就像现代扩展坞可以连接显示器、键盘、移动硬盘等多种外设,为笔记本电脑瞬间扩展功能一样,MCP Server 作为一个智能中枢平台,能够动态接入各类专业能力模块(如知识库、计算工具、领域模型等)。
2025-04-28 10:00:00
995
原创 一文看尽LLM对齐技术:RLHF、RLAIF、PPO、DPO……
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-04-28 08:30:00
878
原创 一文讲明白所有RAG概念、分类、基本流程、实践、评估和优化等方向
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-04-27 10:50:57
835
原创 一篇文章带你彻底搞懂大模型!从入门到企业布局,看完这篇你就是半个专家!
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-04-27 10:46:57
992
原创 一篇文章读懂当前主流的大模型,全面梳理定位、能力差异,典型应用场景,以及选型建议
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-04-27 10:43:58
1095
原创 大模型必备技术:什么是提示词工程(prompt engineering)?为什么需要提示词工程?
简单来说,提示词工程是一种不需要调整大模型参数或权重,就可以获取某种结果的方法。提示词的作用和应用场景都非常广泛,不论是文本生成,还是问答系统,亦或者其它场景。同一个LLM,提示词不一样生成的内容也会不一样,甚至会有很大的差别。所以,从这个角度来说,提示词工程是一种更好地使用大模型的方法。学好提示词,能够让你更好、地使用和操作大模型,并且得到更好的结果。
2025-04-26 10:45:00
920
原创 2025如何成为一名成功的AI产品经理:从传统产品到AI产品的转型之路
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-04-26 10:15:00
1144
原创 一文说清楚什么是多模态大模型,到底与大模型有什么区别
多模态大模型(LMMs)是能够理解和处理各种输入形式的 AI 模型。这些输入包括各种“模态”,如图像、视频和音频。模态是 AI 模型的数据。LMMs 模仿了人类与世界互动的方式。一个多模态系统可以在多种模态下生成输入和处理输出。例如,Gemini,由google开发的一个语言模型,可以通过将其训练过程整合不同类型的数据(如文本、视频和音频)来在多种模态下生成输入和处理输出,从而以多模态的方式理解和生成内容。假设你有一个超级聪明的机器人助手,它是一个多模态大模型。
2025-04-26 08:45:00
1906
原创 颠覆AI认知的MoE完全指南:从零推导混合专家模型底层原理,建议收藏!
1.1 MoE模型定义混合专家模型(Mixture of Experts,MoE)是一种先进的神经网络架构,旨在通过整合多个模型或“专家”的预测来提升整体模型性能。MoE模型的核心思想是将输入数据分配给不同的专家子模型,然后将所有子模型的输出进行合并,以生成最终结果。这种分配可以根据输入数据的特征进行动态调整,确保每个专家处理其最擅长的数据类型或任务方面,从而实现更高效、准确的预测。专家(Experts):模型中的每个专家都是一个独立的神经网络,专门处理输入数据的特定子集或特定任务。
2025-04-25 09:15:00
664
原创 智能化工作流(Agentic Workflows)是什么?有什么模式和应用场景,从零开始讲解!
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
2025-04-25 09:00:00
1204
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人