通透!第一次看到有人这样图解Transformer 解码器 !

前两天看到一位国外博主发的 图解Transformer编码器, 看完非常有启发,所以分享给大家一起学习。

这种形式可以让大家可以更直观的理解相关概念!(前提是大家需要对Transformer基础概念有一定的理解)

解码器是什么?

解码器是负责将编码后的输入和之前生成的标记转换为上下文感知输出的“大脑”。

想象一下,它就像是一位艺术家,根据草图绘制出最终的画面。

第一步 - 处理目标序列

1.1 目标序列嵌入

解码器首先会将需要处理的序列进行嵌入,将原始数据转换成它能够理解的格式。

1.2 位置编码

由于Transformer不像旧模型那样依赖序列顺序,因此它使用位置编码。

这相当于在“是什么”的基础上增加了“在哪里”的信息,对于全面理解序列上下文至关重要!

第二步 - 解码器分层处理

解码器由多个层组成,每个层都会优化输出:

  • 掩码自注意力

  • 交叉注意力

  • 归一化和残差

2.1 掩码自注意力

在自注意力步骤中,解码器确保不会“偷看”未来的信息。这就像解拼图时,不跳过前面的部分直接看全图。

2.2 交叉注意力

在这里,解码器将编码器的输入与其处理过程对齐,确保每条信息都完美同步。

2.3 归一化和残差

归一化保持数据的平滑和统一,防止任何部分过于突出而压倒其他部分。

2.4 前馈神经网络

这一步使用前馈网络增强解码器的预测能力。

确保所有内容都经过调整并与后续步骤保持同步。

2.5 线性分类器和Softmax

将分数转换为概率,这一步决定了最可能的下一个单词。它像是一个分类器,概率最高的词就是解码器的最终输出。

第三步 - 最终输出

解码器将所有处理过的信息编织在一起,以预测序列的下一部分。

这个过程一直持续到序列完成,生成一个完整且富含上下文的输出。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,我现在需要解释Transformer的编码器解码器的特点以及它们的区别。首先,我应该回顾一下Transformer的基本结构。Transformer由编码器解码器组成,每个部分都有不同的组件作用。 编码器部分,我记得每个编码器层通常包含多头自注意力机制前馈神经网络。而解码器层除了这两个组件外,还有一个额外的注意力层,用于处理编码器的输出。接下来,我需要详细比较两者的结构差异。 首先,编码器的作用是处理输入序列,提取特征。它使用自注意力机制来捕捉输入内部的依赖关系。而解码器的任务是根据编码器的输出之前生成的输出,生成目标序列。因此,解码器需要防止看到未来的信息,所以会有掩码机制。 然后,我需要考虑它们的注意力机制的不同。编码器中的自注意力层允许每个位置关注输入序列的所有位置,而解码器的第一个自注意力层是掩码的,只能看到当前位置之前的信息。第二个注意力层则是用来关注编码器的输出,即编码器-解码器注意力。 另外,在训练时,解码器通常会使用教师强制,即使用真实目标序列作为输入,而编码器处理的是源序列。在推断时,解码器需要逐步生成输出,这可能导致自回归特性。 还要注意层数是否相同。一般来说,编码器解码器的层数可以相同,比如原始论文中是6层,但具体应用可能会调整。每层的结构差异也需要明确,比如解码器有额外的注意力层。 可能还需要提到位置编码,两者都会使用,但解码器需要处理生成过程中的位置信息。此外,编码器的输出会传递给每个解码器层,而不仅仅是第一个层。 有没有其他关键点?比如残差连接层归一化的位置是否一致?是的,两者都使用了残差连接层归一化,但解码器在三个子层(掩码自注意力、编码器-解码器注意力、前馈网络)之后都有这些操作。 总结的话,结构差异、注意力机制的不同、训练与推断时的行为差异,以及输入输出的处理方式是主要区别。要确保这些点都被涵盖,并且用清晰的中文表达,避免术语错误。同时,可能需要用例子或公式来加强解释,比如展示注意力机制的公式,或者结构示意图。但用户可能不需要太深入的数学细节,所以保持简洁。 最后,检查是否有遗漏,例如是否提到解码器的初始化可能依赖于编码器的输出,或者不同变体中的调整,比如一些模型可能只有编码器或解码器。不过原始Transformer是编码器-解码器结构,所以应围绕这个展开。确认回答的结构是否清晰,分点说明特点区别,可能用表格对比更直观。</think>### **Transformer编码器与解码器特点及区别解析** --- #### **一、核心结构对比** | **组件** | **编码器(Encoder)** | **解码器(Decoder)** | |------------------|--------------------------------------------------|--------------------------------------------------| | **核心层数** | 通常N层(如原始论文N=6) | 相同层数(与编码器对应) | | **子层构成** | 1. 多头自注意力<br>2. 前馈网络(FFN) | 1. **掩码**多头自注意力<br>2. 编码器-解码器注意力<br>3. 前馈网络 | | **残差连接** | 每个子层后接残差连接+层归一化 | 每个子层后接残差连接+层归一化 | --- #### **二、核心功能差异** **1. 编码器(Encoder)** - **输入处理**:直接接收**源序列**(如待翻译的原文) - **注意力机制**: - **多头自注意力**:全量可见,无位置限制 - 公式:$$ \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$ - **输出用途**:生成**上下文向量**,传递给所有解码器层 **2. 解码器(Decoder)** - **输入处理**: - **训练阶段**:接收**目标序列右移一位**(Teacher Forcing) - **推理阶段**:自回归生成(逐词输出) - **注意力机制**: - **掩码自注意力**:仅可见当前位置及之前内容(防止信息泄漏) $$ \text{MaskedAttention}(Q,K,V) = \text{softmax}\left(\frac{QK^T + M}{\sqrt{d_k}}\right)V $$ ($M$为掩码矩阵,下三角为0,上三角为$-\infty$) - **编码器-解码器注意力**:关注编码器输出的关键信息 - **输出用途**:生成最终预测结果(如翻译后的句子) --- #### **三、关键特性对比** | **特性** | **编码器** | **解码器** | |-------------------------|-----------------------------------------------|-----------------------------------------------| | **注意力可见范围** | 全序列可见 | 掩码自注意力仅见历史信息 | | **参数共享** | 不同层参数独立 | 不同层参数独立 | | **位置编码依赖** | 必需(捕获序列顺序) | 必需(生成时需感知位置) | | **训练目标** | 提取全局特征 | 生成目标序列(交叉熵损失监督) | --- #### **四、工作流程示例** 以机器翻译任务为例: ```text 编码器处理源序列:"Hello world" → 输出上下文向量 解码器逐步生成: Step1: 输入<start> → 预测"Bonjour" Step2: 输入<start> Bonjour → 预测"le" Step3: 输入<start> Bonjour le → 预测"monde" ``` --- #### **五、架构可视化** ![Transformer结构](https://miro.medium.com/v2/resize:fit:1400/1*BHzGVskWGS_3jEcYYi6miQ.png) *红色框:编码器(处理输入);蓝色框:解码器(生成输出)* --- #### **六、代码实现差异(PyTorch示例)** **编码器层**: ```python class EncoderLayer(nn.Module): def __init__(self, d_model, nhead, ff_dim): super().__init__() self.self_attn = MultiheadAttention(d_model, nhead) self.ffn = PositionwiseFFN(d_model, ff_dim) def forward(self, x): x = x + self.self_attn(x, x, x) # 自注意力 x = x + self.ffn(x) # 前馈网络 return x ``` **解码器层**: ```python class DecoderLayer(nn.Module): def __init__(self, d_model, nhead, ff_dim): super().__init__() self.masked_attn = MultiheadAttention(d_model, nhead) self.cross_attn = MultiheadAttention(d_model, nhead) self.ffn = PositionwiseFFN(d_model, ff_dim) def forward(self, x, enc_output): x = x + self.masked_attn(x, x, x, attn_mask=mask) # 掩码自注意力 x = x + self.cross_attn(x, enc_output, enc_output) # 交叉注意力 x = x + self.ffn(x) return x ``` --- #### **七、延伸应用场景** | **模型类型** | **编码器使用** | **解码器使用** | **典型案例** | |---------------------|-----------------------|-----------------------|-----------------------| | **纯编码器架构** | ✔️ | ❌ | BERT、ViT | | **纯解码器架构** | ❌ | ✔️ | GPT系列、LLaMA | | **编码器-解码器** | ✔️ | ✔️ | T5、BART、原始Transformer | --- #### **八、总结要点** 1. **结构差异**:解码器比编码器多一个注意力层(编码器-解码器交互) 2. **注意力限制**:解码器的自注意力需要掩码防止未来信息泄漏 3. **功能分工**:编码器专注于理解输入,解码器专注于生成输出 4. **应用扩展**:现代大模型常根据任务需求选择单一结构(如仅用解码器的GPT) 通过这种分工,Transformer实现了高效的序列到序列建模,成为NLP领域的基础架构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值