前两天看到一位国外博主发的 图解Transformer编码器, 看完非常有启发,所以分享给大家一起学习。
这种形式可以让大家可以更直观的理解相关概念!(前提是大家需要对Transformer基础概念有一定的理解)
解码器是什么?
解码器是负责将编码后的输入和之前生成的标记转换为上下文感知输出的“大脑”。
想象一下,它就像是一位艺术家,根据草图绘制出最终的画面。
第一步 - 处理目标序列
1.1 目标序列嵌入
解码器首先会将需要处理的序列进行嵌入,将原始数据转换成它能够理解的格式。
1.2 位置编码
由于Transformer不像旧模型那样依赖序列顺序,因此它使用位置编码。
这相当于在“是什么”的基础上增加了“在哪里”的信息,对于全面理解序列上下文至关重要!
第二步 - 解码器分层处理
解码器由多个层组成,每个层都会优化输出:
-
掩码自注意力
-
交叉注意力
-
归一化和残差
2.1 掩码自注意力
在自注意力步骤中,解码器确保不会“偷看”未来的信息。这就像解拼图时,不跳过前面的部分直接看全图。
2.2 交叉注意力
在这里,解码器将编码器的输入与其处理过程对齐,确保每条信息都完美同步。
2.3 归一化和残差
归一化保持数据的平滑和统一,防止任何部分过于突出而压倒其他部分。
2.4 前馈神经网络
这一步使用前馈网络增强解码器的预测能力。
确保所有内容都经过调整并与后续步骤保持同步。
2.5 线性分类器和Softmax
将分数转换为概率,这一步决定了最可能的下一个单词。它像是一个分类器,概率最高的词就是解码器的最终输出。
第三步 - 最终输出
解码器将所有处理过的信息编织在一起,以预测序列的下一部分。
这个过程一直持续到序列完成,生成一个完整且富含上下文的输出。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓