【stablediffusion】最强最快的抠图和扣视频工具BiRefNet,在ComfyUI中的使用

今天,我们将向您介绍一款令人兴奋的AI工具——BiRefNet。这是一款基于Stable Diffusion技术的强大抠图和扣视频工具,旨在为您提供快速、高效的图像处理体验。无论您是AI绘画的新手还是专业人士,这个工具都能为您带来极大的便利。

BiRefNet在ComfyUI中的集成,使得用户可以轻松地使用这一工具进行图像和视频的抠图处理。这个工具利用了Stable Diffusion的最新算法,能够实现快速、准确的抠图效果,大大提高了工作效率。

在这个教程中,我们将详细介绍BiRefNet在ComfyUI中的使用方法。您将学习如何通过简单的步骤使用这个工具进行图像和视频的抠图处理,以及如何调整参数以获得最佳效果。我们将提供详细的操作步骤和技巧,帮助您更好地掌握这个工具。

所以,如果您对BiRefNet和Stable Diffusion技术充满好奇,或者想要尝试一下这个有趣的功能,那就赶紧试试吧!它将会给您带来无尽的惊喜和乐趣!

在这里插入图片描述

简介

BiRefNet 是目前最好的开源可商用背景抠除模型,经过测试:ComfyUI中2s极速出图,而且超级精准,但是模型很小才八百多兆。

官网:https://www.birefnet.top/

Github:https://github.com/ZhengPeng7/BiRefNet

在线Demo:https://www.birefnet.top/segment

原图:

抠图工具对比:

原图:

抠图工具对比:

原图:

抠图工具对比:

效果确实厉害,如果能安装到ComfyUI里,配合其他工作流使用就更完美了。

BiRefNet 在ComfyUI中的安装和使用

ComfyUI manager中搜索:BiRefNet 有两个插件:

注意

  • viperyl/ComfyUI-BiRefNet 只能出蒙版图,不能出透明的png图,也不能对视频进行抠图

  • ZHO-ZHO-ZHO/ComfyUI-BiRefNet-ZHO 进行了更新,能直出透明的png图和蒙版,也能对视频进行抠图,输出抠图后的视频和蒙版视频。

  • 而且以上两个都是用的比较旧的模型

所以,这里都不用,而使用另一个最新更新的,支持官方最新的模型的ComfyUI插件,目前还没有收录到Manager里:

https://github.com/MoonHugo/ComfyUI-BiRefNet-Hugo.git

通过Manager的Git来安装:

安装完插件后,启动ComfyUI时会自动下载,此时需要魔法,如果没有魔法,对于秋叶启动器的用户可以尝试配置Huggingface国内镜像,如下图:

发送指令:BiRefNet

自主获取,下载后,放到如下目录,然后再启动ComfyUI:

启动完成后,导入官方工作流:

图片抠图工作流:

视频抠图工作流:

下面进行测试

测试1-图片

测试2-图片-高难度

测试3-图片-高难度

本文转自 https://mp.weixin.qq.com/s/AepRkD1MqAuzBBJ61bCJMQ,如有侵权,请联系删除。

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

在这里插入图片描述

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述
在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

在这里插入图片描述

### ComfyUIStableDiffusion的异同点 #### 功能特性 ComfyUI StableDiffusion 均属于 AI 绘画工具范畴,但在功能特性用户体验上存在显著区别。 - **StableDiffusion** 是一种基于深度学习的图像生成模型,专注于通过文本到图像的方式创建高质量的艺术作品。该平台拥有丰富的社区支持大量的预训练模型供用户选择[^1]。 - **ComfyUI** 则更像是一款面向开发者的图形界面工作流编辑器,允许使用者构建复杂的节点图来定义数据处理流程。它不仅限于图像生成任务,还可以扩展至其他类型的机器学习应用中去。这种灵活性使得 ComfyUI 成为了研究人员技术爱好者探索新算法的理想环境。 #### 应用场景 - 对于希望快速获得创意灵感或直接产出成品图片的一般创作者而言,**StableDiffusion WebUI** 提供了一个易于使用的交互界面以及众多现成的工作流解决方案,适用于AI视频生成、AI证件照生成等多种实际需求。 - 而对于那些寻求高度定制化的项目或者想要深入研究底层机制的研究人员来说,**ComfyUI** 的模块化架构提供了更大的自由度来进行实验创新。例如,在涉及多阶段的数据预处理、特征提取或是不同模型间的组合调用时,ComfyUI 显示出了独特的优势。 #### 技术实现方式 - 在技术层面,**StableDiffusion** 主要依赖于预先训练好的神经网络权重文件,并利用这些固定的参数集进行推理运算以生成目标图像。当涉及到微调或其他形式的学习过程中,则会采用变分自编码器中的重参数化技巧来克服传统方法中存在的梯度消失问题[^2]。 - 相较之下,**ComfyUI** 并不是一个具体的模型而是提供了一套灵活的操作接口让开发者可以轻松集成各种第三方库服务。这意味着除了内置的支持外,任何遵循标准API规范的新组件都可以被无缝接入整个生态系统之中,极大地促进了跨学科合作的可能性。 ```python # 这是一个简单的Python脚本示例,展示如何使用不同的库加载模型 import torch from diffusers import StableDiffusionPipeline model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device) prompt = "a photograph of an astronaut riding a horse" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值