当我们在网络上发现一些有意思的文案是时,对方的网站不支持下载,这时我们就可以采取截图的方式来获得我们想要的文案图片,但是此时我们又不想要手动去复制文字,同时网络上的图片工具的图片文字识别功能又需要付费使用,为此我写了一个利用pycharm来实现读取图片中文字的python工程。
工程搭建的流程如下:首先我们需要打开pycharm新建一个pure python 工程,然后在工程内安装相应的库,本工程只需要安装easyocr库、opencv-python库、Pillow库、安装torch和torchvision这几个库就可以了。之所以选择python就是因为他有丰富的库资源,并且这些库的安装也非常简单,只需要pip install easyocr、pip install opencv-python、pip install torch torchvision torchaudio,这几条命令就可以了。main.py文件的源代码如下:
import easyocr
import argparse
import cv2
from PIL import Image
import numpy as np
def recognize_chinese(image_path):
try:
# 创建EasyOCR读取器,指定中文简体
reader = easyocr.Reader(['ch_sim'])
# 读取图片
image = cv2.imread(image_path)
# 检查图片是否成功加载
if image is None:
pil_image = Image.open(image_path)
image = np.array(pil_image)
# 执行OCR识别
results = reader.readtext(image)
# 提取识别文本
text = '\n'.join([result[1] for result in results])
return text
except Exception as e:
print(f"发生错误: {str(e)}")
return None
if __name__ == "__main__":
# 创建命令行参数解析器
parser = argparse.ArgumentParser(description='识别图片中的汉字')
parser.add_argument('image_path', help='图片文件路径')
# 解析命令行参数
args = parser.parse_args()
# 调用识别函数
result = recognize_chinese(args.image_path)
# 输出识别结果
if result:
print("识别结果:")
print(result)
我们在读取图片上的文字时,我们可以将其放在工程的目录下,我们也可以在pycharm打开终端执行python main.py "图片的文件地址",相对第一种我更喜欢第二种方式。我认为第二种方法操作更简单并且运行时稳定性更高。
本文仅供学习,请勿将其用于商业用途,违者后果自负。