- 博客(15)
- 收藏
- 关注
原创 对于通用Agent的个人思路(记得好好吃饭~,爱你们所有人|•‘-‘•)و✧)
制定一个大纲,并且列出一系列可能出现的问题由人类一一解答,以后再交由通用Agent进行输出,然后可以定期,也就是说半个小时或者是说用户再一次上线的时候去询问一些细节,进行细节补充,或者是具体的改正,而对于一些网站问题,最好可以使用人类的账户,人机验证的问题(我们居然觉得去雇佣一些员工在背后进行真人操作是一个不错的方案)manus的金币制一次性输出7w字,快把我恶心死了,一看实际内容,具体的内容很多都是错的,还不如我直接用Grok。而心响呢,同时可以进行多并发,输出内容呢,哇好短呀,和百度的问小姐一样。
2025-05-04 22:20:07
444
原创 对于通用Agent全面的数据和分析,续(对于Agent的主观看法分析与预测)
一、定义Agent(智能体/代理)是一种具有自主性、反应性、主动性和社会性的智能实体,能够感知环境并通过决策和行动实现特定目标。其核心特征在于从被动响应到主动规划的能力,甚至能通过协作或竞争与环境及其他实体互动。 学术定义马文·明斯基(Marvin Minsky): Agent 是一种具备社会交互性和智能性的实体,可通过协商解决复杂问题。迈克尔·伍尔德里奇(Michael Wooldridge): Agent 需满足以下性质:自主性:独立运行,无需持续人工干预;反应性:对环境变化快速响应;主动性:主动发起目
2025-04-30 18:32:41
601
原创 纯主观,对于通用Agent的个人看法和测评体验
目前的问题,目前的问题主要出现在他的要求太高了,他的api的要求输入输出的tokens要求太高了,而且记忆也是问题,这些东西都需要通过算法,还有算力的叠加,才能够解决,如果说你想要去做到这件事情,你不得不去面对这两个问题,而目前他们的做法是2选1,要么要求高的,准确度高的输出能力,然后牺牲他的用户数量,而另一种就是扩大用户数量,去减小它的输出能力,这都不是我们想要的,什么时候算力达标了,算法改进了,什么时候才有真正的Agent。我对于他的未来,我是相当的看好,可以说什么本人就在从事这样一个东西。
2025-04-25 23:11:41
1024
原创 多模态人工智能的现状,类型与未来发展的全面综合性分析论述报告(包括deepseek,Gemini等,共计20000字+)
在 MMLU 基准测试中,Phi-3-mini 的得分达到了 69.4%,Phi-3-small 达到了 75.3%,Phi-3-medium 达到了 78.2%。在 MMLU(大规模多任务语言理解)基准测试中,GPT-4o 的得分达到了 88.7%,超越了之前的 GPT-4 模型。在内部测试中,Sora 生成的视频在视觉质量、文本忠实度和时长方面,相比之前的文本生成视频模型,如 Runway Gen-2 和 Pika 1.0,分别提升了 85%、73% 和 68%(基于人工评估)。
2025-02-12 02:28:14
1102
1
原创 Gemini2.0pro?不,deepseekr1的平替。
他与ChatGPT o1模型和o3mini模型,都存在回答问题假大空的现象,但是,可以通过提示词去调节,他的编程能力是令我惊喜的,我假装我自己不知道如何去使用python,他完全可以较为独立的完成一款应用,当然肯定要我给予反馈,在大面上是没有问题的,包括bug的修复等等,肯定还是很粗略的,不是那么精细的,但是已经表现出了一种智能化的雏形,已经有种向deepseekr1靠拢的感觉,也就是我们所说的顿悟,如果说把深度求索的 r1模型,叫做天才,那么Gemini2.0Pro,可以称得上是无比努力的人才。
2025-02-09 21:31:56
468
原创 机器学习的原理,现状,应用与未来发展(纯内容12000字+)
未来展望: 探讨了机器学习未来可能的发展趋势 (更强大、更通用的模型,更智能、更自主的系统,更高效、更节能的算法,更安全、更可靠的模型)、潜在挑战 (数据挑战、模型挑战、算法挑战) 和伦理问题 (公平性、隐私保护、透明度、安全性、就业影响、自主武器、算法偏见、数据所有权与控制权、责任归属)。现状: 分析了机器学习领域的研究热点 (深度学习、可解释机器学习、强化学习、机器学习与其他领域的交叉)、技术突破 (自然语言处理、计算机视觉、AutoML) 和行业应用 (医疗保健、金融、零售、交通、制造业、娱乐等)。
2025-02-09 00:05:34
1004
原创 全面分析AGI的原理,现状,应用与未来展望(26000+)
(Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.)然而,这些系统在面对超出其预设范围的任务时,往往表现出明显的局限性,缺乏人类的适应性、创造性和通用解决问题的能力。
2025-02-08 23:30:33
3418
原创 全面阐述API的原理,现状与未来(20000字+)
通过对API的技术本质、设计范式、生态构建、安全机制等多维度的深度解析,结合业界最佳实践与前沿研究成果,本文将揭示API在驱动数字化转型、赋能创新应用、重塑产业格局等方面所扮演的关键角色,并为API的未来发展提供富有洞见的思考与建议。面对API带来的机遇和挑战,企业、开发者和整个社会都应积极拥抱变革,加强合作,共同构建一个更加开放、互联、智能的未来。分析API在云计算、微服务、移动应用、物联网、人工智能等领域的应用现状,介绍典型案例,并展望API的未来发展趋势、技术演进及潜在影响,并提出建议。
2025-02-08 23:15:45
1116
原创 全面比较API与AGI的差异,展望两者的未来(字数较多)
本文旨在深入探讨API与AGI之间的本质差异,分析它们在功能、架构、应用场景等方面的区别,并在此基础上对二者未来的发展趋势和潜在的融合点进行展望。与当前主流的弱人工智能(Narrow AI 或 Weak AI)不同,AGI不是针对特定任务设计的,而是能够在各种不同的任务和环境中表现出学习、推理、解决问题、理解、感知、交流和创造性等通用智能能力。当然, API 背后提供的服务可能依赖于数据驱动的模型(例如,推荐系统的 API),但这是 API 功能的间接体现,而不是 API 本身。
2025-02-08 23:05:55
794
原创 让每个人都明白人工智能大数据模型深度思考的本质(人工智能大数据模型深度思考原理研究的简化版)
第一次写科普文(类似)把读者当小朋友们看待的,如果不喜欢这种风格,我可以换一种风格。还请海涵,如有问题,请指出,感激不尽。想象你遇到一道超难的数学题,比如"小明比小红多5颗糖,两人共有23颗,问小红有几颗?当AI遇到这种题:"甲比乙大5岁,两人年龄和是23,求乙几岁?代入检查:甲=14,乙=9 → 14+9=23 ✅。
2025-02-08 02:04:22
743
原创 人工智能大数据模型深度思考的具体原理阐述(以deepseekr1为例,较为专业,简化版看下一篇)
在人工智能领域,DeepSeekR1通过强化学习(RL)驱动推理链生成模拟这一机制:模型在生成答案前主动构建多步骤的“思维链”(ChainofThought,CoT),并通过规则奖励系统(如准确性奖励与格式奖励)实现自我验证。p值:在AIME 2024基准测试中,DeepSeekR1Zero的pass@1分数从15.6%提升至71.0%(p<0.001,卡方检验)。性能对比:在MATH500测试中,纯SFT模型的pass@1为52.1%,显著低于RL+SFT模型的97.3%(Δ=45.2%)。
2025-02-08 01:47:55
2591
原创 对于大数据模型深度搜索不稳定性提示词解决方案的专项研究
对于抽象问题或复杂问题,可以利用例如ChatGPT4o与deepseekv3等模型进行细致拆分,在投入给例如deepseekr1与ChatGPTo1或o3mini等深度思考模型可有效控制大数据模型的思考范围与回答精确度,对于同一个复杂问题的回答精确度可有效提高,此方面研究的转化率较低,但收效较高,值得关注。我们选取了自然语言处理中的一个常见任务——问答系统,利用改进的提示词模板提升了模型的稳定性和准确性。初始提示词:模型的准确率为87%,但在重复询问相同的50次问题中,结果不一致的次数为12次。
2025-02-07 23:45:48
387
原创 对于深度搜索大数据模型不稳定性的多维解决方案研究
本文通过细分研究,旨在从微调、提示词、数据预处理等方面提出具体的解决方案,以增强模型的稳定性。通过本文的研究,我们有理由相信,通过综合运用多种技术手段,可以显著改善深度搜索大数据模型的不稳定性问题,为构建更可靠的AI搜索系统提供有力支持。我们的实验证实,经过预处理的数据集训练出的模型在同一查询下的结果一致性提高了40%。实验结果:通过结合各方法,我们观察到模型的稳定性和准确性都有显著提升,同一查询下的结果一致性提高了50%以上。方法:在微调模型的基础上,结合优化后的提示词和经过预处理的数据进行训练。
2025-02-07 23:40:32
359
原创 对于大数据模型深度思考功能不稳定性的研究
通过本文的量化分析和细分研究,我们确认了深度搜索大数据模型不稳定性的多重来源。然而,研究发现,即使面对相同的查询请求,这些模型的输出结果往往存在显著的差异性,这种不稳定现象不仅影响了用户体验,也挑战了模型的可靠性。量化分析:通过分析不同数据集(如包含噪声的数据集和经过清洗的数据集)的训练结果,我们发现噪声数据集的模型在相同查询下的结果方差显著高于清洗后的数据集。量化分析:通过控制模型的深度与宽度(即神经网络的层数和每层节点数),我们观察到复杂度增加时,模型对训练数据的记忆性增强,但对新数据的泛化能力下降。
2025-02-07 23:37:25
498
原创 deepseek如何作为鲶鱼搅动国内外所有AI大数据模型的,纯主观。
国内外包括豆包,文心一言,智谱,通义千问等主流大数据模型,均降价幅度在90%左右,而gpt4,4Turbo,3.5等模型,均有50%-75%不等的降价幅度(在其发布后一段时间内)包括Gemini各个模型以及其他的国外大数据模型的API都有不同程度的降价幅度,其降价范围处在ChatGPT与国内大数据模型普遍降价范围区间内,也不再阐述。Claude 2性能提升:在 Claude 1 的基础上,Claude 2 在性能上有所提升,支持更长的上下文窗口,适用于更复杂的对话和内容生成任务。模型名称 发布日期 特点。
2025-02-05 00:38:14
1066
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人