Tensorflow-gpu安装教程(Win11, Anaconda3,Python3.9)

前言

CPU版本和GPU版本的区别

  • CPU版本和GPU版本的区别主要在于运行速度,GPU版本运行速度更快,所以如果电脑显卡支持cuda,推荐安装gpu版本的。
  • CPU版本,无需额外准备,CPU版本一般电脑都可以安装,无需额外准备显卡的内容,(如果安装CPU版本请参考网上其他教程!)
  • GPU版本,需要提前下载 cuda 和 cuDNN。(本文为GPU版本安装教程。)

Tensorflow-gpu版本安装的准备工作

我的安装环境为:

操作系统 显卡 Python
win11 NVIDIA GeForce RTX2050 3.9.13

我的tensorflow-gpu 安装版本为:

tensorflow-gpu cuda cuDNN
tensorflow-gpu 2.7.0 cuda 11.5.2 cuDNN 8.3.2

注: 我这个对应关系是在网上查询别人安装成功的案例,不要自己随意组合,不然很容易安装失败,或者就按官网查询的组合安装,安装过程是一样的! 

(一)、查看电脑的显卡:

1)、右键此电脑→右键选管理设备管理器显示适配器
主要看独显:GeForce RTX 2050

命令行:WIN+R - dxdiag - 查看显卡型号

可以看到点击出现了NVIDIA GeForce ...,即你的电脑显卡型号。

如果有出现,那就表示可以使用Tensorflow-gpu版本,如果没有的就只能老老实实安装CPU版咯。

建议算力≥3.5,相对会运行快一些; 查询入口:CUDA GPUs - Compute Capability | NVIDIA Developer

2)、右键显卡属性驱动程序,可以查看显卡的驱动程序:

3)、查看GPU驱动版本,也就是我们“CUDA Version”,Windows 11 版本中一般是12.0版本,键盘上同时按win +r,输入cmd,打开命令窗口,在命令窗口输入:

nvidia-smi

 

(二) 、Anaconda的安装

安装tensorflow提前安装好Anaconda。之前有写过,可参考:Anaconda安装及pip镜像配置-CSDN博客

Anaconda安装成功后,进入下面tensorflow的安装!

后面tensorflow的安装可成三步:

  1. cuda的安装
  2. cuDNN的神经网络加速库安装
  3. 配置环境变量

(三)、cuda下载和安装

下载cudacuDNN。在官网上下载对应的cudacuDNN,版本可以低于上面查到的CUDA版本但不能高于电脑支持的版本。

  • cuda下载地址:

CUDA Toolkit Archive | NVIDIA Developer

  • cudnn下载地址:

cuDNN Archive | NVIDIA Developer

1)、下载:

我下载的是CUDA Toolkit 11

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值