前言
CPU版本和GPU版本的区别
- CPU版本和GPU版本的区别主要在于运行速度,GPU版本运行速度更快,所以如果电脑显卡支持cuda,推荐安装gpu版本的。
- CPU版本,无需额外准备,CPU版本一般电脑都可以安装,无需额外准备显卡的内容,(如果安装CPU版本请参考网上其他教程!)
- GPU版本,需要提前下载 cuda 和 cuDNN。(本文为GPU版本安装教程。)
Tensorflow-gpu版本安装的准备工作
- 安装前 一定 要查看自己电脑的环境配置,然后查询Tensorflow-gpu、Python、 cuda 、 cuDNN 版本关系,要 一 一对应!
- 查询四者关系:Build from source on Windows | TensorFlow (google.cn)
我的安装环境为:
操作系统 | 显卡 | Python |
---|---|---|
win11 | NVIDIA GeForce RTX2050 | 3.9.13 |
我的tensorflow-gpu
安装版本为:
tensorflow-gpu | cuda | cuDNN |
---|---|---|
tensorflow-gpu 2.7.0 | cuda 11.5.2 | cuDNN 8.3.2 |
注: 我这个对应关系是在网上查询别人安装成功的案例,不要自己随意组合,不然很容易安装失败,或者就按官网查询的组合安装,安装过程是一样的!
(一)、查看电脑的显卡:
1)、右键此电脑
→右键选管理
→设备管理器
→显示适配器
主要看独显:GeForce RTX 2050
命令行:WIN+R - dxdiag - 查看显卡型号
可以看到点击出现了NVIDIA GeForce ...
,即你的电脑显卡型号。
如果有出现,那就表示可以使用
Tensorflow-gpu
版本,如果没有的就只能老老实实安装CPU版咯。建议算力≥3.5,相对会运行快一些; 查询入口:CUDA GPUs - Compute Capability | NVIDIA Developer
2)、右键显卡
→属性
→驱动程序
,可以查看显卡的驱动程序:
3)、查看GPU驱动版本,也就是我们“CUDA Version”,Windows 11 版本中一般是12.0版本,键盘上同时按win
+r
,输入cmd
,打开命令窗口,在命令窗口输入:
nvidia-smi
(二) 、Anaconda的安装
安装tensorflow
提前安装好Anaconda
。之前有写过,可参考:Anaconda安装及pip镜像配置-CSDN博客
Anaconda
安装成功后,进入下面tensorflow
的安装!
后面tensorflow
的安装可成三步:
cuda
的安装cuDNN
的神经网络加速库安装- 配置环境变量
(三)、cuda下载和安装
下载cuda
和cuDNN
。在官网上下载对应的cuda
和cuDNN
,版本可以低于上面查到的CUDA
版本但不能高于电脑支持的版本。
- cuda下载地址:
CUDA Toolkit Archive | NVIDIA Developer
- cudnn下载地址:
cuDNN Archive | NVIDIA Developer
1)、下载:
我下载的是CUDA Toolkit 11