机器学习核心任务与算法分类全解析
一、机器学习的核心任务:从预测到理解
1.1 监督学习:有标签的指引之路
(1)分类(Classification):给事物贴"标签"
-
二分类(Binary Classification):将样本分为两种类别,典型场景如:
- 垃圾邮件检测(是/否)
- 疾病诊断(患病/健康)
数学表达:给定特征向量 ( x ),预测类别 ( y \in {0, 1} )。
-
多分类(Multiclass Classification):处理两种以上互斥类别,如:
- 手写数字识别(0-9共10类)
- 新闻分类(政治、经济、科技等)
数学表达:( y \in {1, 2, \dots, K} ),( K \geq 3 )。
-
多标签分类(Multi-label Classification):一个样本可属于多个类别,标签不互斥,如:
- 图像标注(一张图可能同时包含"狗"和"草地")
- 文本主题分类(一篇文章可能涉及"科技"和"商业")
(2)回归(Regression):预测连续值的艺术
-
线性回归(Linear Regression):假设特征与目标呈线性关系:
y = θ 0 + θ 1 x 1 + θ 2 x 2 + ⋯ + θ n x n + ϵ y = \theta_0 + \theta_1x_1 + \theta_2x_2 + \dots + \theta_nx_n + \epsilon y=θ0+θ1x1+θ2x2+⋯+θnxn+ϵ
例如:根据房屋面积、地段预测房价。 -
多项式回归(Polynomial Regression):引入特征的高次项,拟合非线性关系:
y = θ 0 + θ 1 x + θ 2 x 2 + ⋯ + θ n x n + ϵ y = \theta_0 + \theta_1x + \theta_2x^2 + \dots + \theta_nx^n + \epsilon y=θ0+θ1x+θ2x2+⋯+θnxn+ϵ
例如:用多项式拟合人口增长曲线。 -
逻辑回归(Logistic Regression):虽名带"回归",实为分类算法,通过sigmoid函数将线性输出转换为概率:
σ ( z ) = 1 1 + e − z , z = θ T x \sigma(z) = \frac{1}{1 + e^{-z}}, \quad z = \theta^T x σ(z)=1+e−z1,z=θTx
输出 ( \sigma(z) ) 表示属于正类的概率,常用于二分类。
1.2 无监督学习:在未知中寻找秩序
(1)聚类(Clustering):物以类聚的自动分组
-
k均值算法(k-means):将数据划分为k个簇,使簇内样本距离最小:
- 随机初始化k个质心
- 迭代分配样本到最近质心,更新质心位置
例如:客户分群、基因表达模式聚类。
-
密度聚类(DBSCAN):基于样本密度划分簇,能发现任意形状的簇,如:
- 识别空间中的密度热点(如城市犯罪高发区域)
(2)降维与可视化:从高维到低维的信息压缩
- 主成分分析(PCA, Principal Component Analysis):通过线性变换将高维数据投影到低维空间,保留主要方差:
y = W T x , W ∈ R n × k , k < n y = W^T x, \quad W \in \mathbb{R}^{n \times k}, \ k < n y=WTx,W∈Rn×k, k<n
例如:将100维图像特征降维到10维,用于图像压缩。
1.3 强化学习:在试错中成长
- 核心要素:
- 环境观测:智能体感知环境状态 ( s_t )
- 动作执行:选择动作 ( a_t ) 影响环境
- 奖励反馈:获得奖励 ( r_t ),优化策略 ( \pi(a|s) )
- 典型场景:
- 围棋AI(AlphaGo)通过蒙特卡洛树搜索优化落子策略
- 机器人导航:在未知环境中学习避障路径
二、机器学习算法分类:从学习方式到泛化策略
2.1 按监督程度分类:数据有无标签的区别
(1)监督学习(Supervised Learning)
- 特点:训练数据包含特征 ( X ) 和标签 ( y ),目标是学习 ( X \to y ) 的映射。
- 代表算法:决策树、支持向量机(SVM)、神经网络。
(2)无监督学习(Unsupervised Learning)
- 特点:训练数据无标签,目标是发现数据内在结构。
- 代表算法:
- 聚类(k-means、DBSCAN)
- 关联规则学习(Apriori:发现"啤酒→尿布"式的购物篮关联)
(3)半监督学习(Semi-supervised Learning)
- 特点:结合少量标记数据和大量无标记数据训练,如:
- 先用无监督学习初始化模型,再用标记数据微调
- 适用于标记成本高的场景(如医学图像标注)
(4)强化学习(Reinforcement Learning)
- 特点:通过与环境交互学习,不依赖预标记数据,如:
- 游戏AI通过试错学习最优策略
2.2 按数据使用方式分类:离线与在线的区别
(1)批量学习(Batch Learning)
- 特点:一次性处理全部数据,训练完成后部署,如:
- 传统机器学习模型训练(需足够内存存储全量数据)
- 缺点:无法适应数据实时变化,计算资源需求高。
(2)在线学习(Online Learning)
- 特点:数据逐条或按小批量输入,模型实时更新,如:
- 推荐系统实时响应用户行为变化
- 公式:每次接收数据 ( (x_t, y_t) ),更新参数 ( \theta \leftarrow \theta - \alpha \nabla L(\theta; x_t, y_t) )
2.3 按泛化方式分类:记忆与建模的区别
(1)基于实例的学习(Instance-based Learning)
- 核心:直接记忆训练实例,通过相似度计算预测新样本,如:
- k近邻(KNN):新样本的类别由最近的k个邻居投票决定
- 优点:无需显式建模,适合简单场景
(2)基于模型的学习(Model-based Learning)
- 核心:先构建数据模型,再用模型预测,如:
- 线性回归:通过最小二乘法拟合直线模型
- 神经网络:通过反向传播构建复杂非线性模型
三、典型应用场景:算法与任务的配对艺术
3.1 监督学习的主战场
- 分类场景:
- 医疗诊断:根据影像特征判断肿瘤良性/恶性(二分类)
- 手写识别:将图像像素映射到0-9类别(多分类)
- 回归场景:
- 股票预测:根据历史数据预测明日股价(线性回归变种)
- 房价评估:结合面积、地段等特征预测价格(多项式回归)
3.2 无监督学习的用武之地
- 聚类应用:
- 电商用户分群:根据购买行为将用户划分为"高频高消费"等群体
- 降维应用:
- 人脸识别:将数千维像素特征降维到百维,加速匹配
3.3 强化学习的前沿领域
- 游戏与决策:
- AlphaStar:通过强化学习在星际争霸中击败人类选手
- 自动驾驶:在复杂路况中学习最优驾驶策略
四、总结:机器学习的任务与算法图谱
从监督学习的分类回归到无监督学习的聚类降维,再到强化学习的试错成长,机器学习的任务体系覆盖了从数据理解到决策优化的全流程。而按监督程度、数据使用方式、泛化策略的分类,则为算法选择提供了清晰的指引。在实际应用中,需根据数据特点(有无标签、规模大小)和任务目标(预测、聚类、决策),选择合适的算法框架——这既是工程实践的艺术,也是机器学习解决问题的核心逻辑。