连续正整数的和
【问题描述】
对于一个正整数x(3≤x≤1000),寻找一种方案,将x分解成连续正整数的和。即
x=x1+x2+......+xn
其中x1、x2、......、xn是自小至大的连续正整数,且n>1。
比如,对于输入的数字10,可以分解成"10=1+2+3+4"。
如果存在多于一种的可行方案,则选取等式右边项的个数最多的那一种。比如,9可以分解为"9=2+3+4",也可以分解为"9=4+5"。但是前一种分解成3个数的和,后一种分解成2个数的和,所以前一种是有效解。
【输入文件】输入文件为当前目录下的scpi.in,该文件只含有一个正整数x。
【输出文件】输出文件为当前目录下的scpi.out。
如果x可以分解为连续正整数的和,则按如下格式输出一行等式:
x=x1+x2+......+xn
如果无法分解,则打印"x:NOANSWER"。
#include <stdio.h>
// 函数用于寻找并输出连续正整数的和的分解形式,选取项数最多的有效解
void findAndPrintSum(int x) {
int max_n = 0; // 用于记录最多的项数
int valid_a = 0; // 用于记录对应最多项数的起始正整数
int n,i;
for (n = 2; n < x; n++) {
// 根据等差数列求和公式求解起始正整数a
double a_double = ((double)2 * x / n - (double)(n - 1)) / 2;
int a = (int)a_double;
// 检查计算出的起始正整数是否为整数且满足条件
if (a_double == (double)a && a > 0 && ((n * (2 * a + n - 1)) / 2 == x)) {
if (n > max_n) {