自从ChatGPT(全名:Chat Generative Pre-trained Transformer)于2022年11月30日发布以来,一个新兴的行业突然兴起,那就是提示工程(Prompt engineering),可谓如日冲天。从简单的文章扩写,到RAG,ChatGPT展现了前所未有的惊人能力。
在上一篇文章中,我们介绍了5个提示工程方法论和框架,今天,我们将继续向大家介绍其它的5个提示工程方法论和框架。
01 提示工程总览
提示工程技术大概可以分成四类:
- 基于样本提示技术
- 思维链技术
- 自动增强技术
- 交互与推理技术
在上一篇文章中,我们介绍了(下图中标有(1)的部分):
- 零样本提示(Zero-shot)
- 少样本提示(Few-shot)
- 思维链(Chain-of-Thought / CoT)
- 自动思维链(Automatic CoT)
- 自洽(Self-consistency)
这篇文章将继续介绍其它的方法论和框架,包括:
- 自动提示工程师(Automatic Prompt Engineer)
- 生产知识提示(Generated Knowledge Prompting)
- 思维树(Tree of Thought / ToT)
- 思维图(Graph of Thoughts / GoT)
- 自动增强检索(Retrieval Augmented Generation / RAG)
请看下方标有✅的部分(标有(3)的部分将在下一篇文章介绍)。
以下是它们各自的发布时间线:
02 自动增强技术
Automatic Prompt Engineer(APE)
自动提示工程师(APE)是一种用于自动生成(而不是依赖人工编写)和选择指令的框架。它的目标是通过为特定任务自动生成和选择最合适的指令来提高大型语言模型(LLMs)的性能。
APE由一个推理模型和一个目标模型组成。推理模型生成指令候选,目标模型评估这些指令候选的性能。
推理模型使用一个额外的提示,通过提供输出示例来生成指令候选。这个提示被称为指令模板(instruction template)。指令模板是一个预先定义的指令结构,它指导推理模型生成指令候选。目标模型使用指令候选执行任务,并计算它们的性能。
推理模型和目标模型通过一个评估函数(evaluation function)进行交互。评估函数接收指令候选和任务结果作为输入,并计算它们的性能。性能可以是任何指标,例如准确率、召回率或F1分数