Pytorch的安装(CPU版本)

一:判断是否有NVIDIA显卡

在安装PyTorch之前,我们需要判断您的计算机是否安装了NVIDIA显卡,因为PyTorch的GPU版本需要NVIDIA显卡来加速计算。您可以通过以下步骤来判断:

① 打开设备管理器:在Windows上,按下Win键和X键,然后选择“设备管理器”。在macOS上,打开“系统偏好设置”,选择“硬件”选项卡,然后点击“设备管理器”。

② 查看显示适配器:在设备管理器中,展开“显示适配器”或“图形处理器”部分,查看是否有NVIDIA显卡的列表。如果有NVIDIA显卡,那么您的计算机适合安装PyTorch的GPU版本。

如下图所示,若没有NVIDIA显卡,则需要安装CPU版本:

二.anaconda的安装:

首先,访问Anaconda官网(Free Download | Anaconda),下载安装anaconda,详细的安装过程后序会发布。

三.安装pytorch(cpu版本):

首先,确保您的计算机上已安装了合适版本的Python。PyTorch需要Python 3.6或更高版本。同时,您还需要安装pip包管理器,用于安装PyTorch和其他依赖项。所以我们可以通过安装Anaconda来创建一个适合深度学习的Python环境。以下是详细的安装步骤:

在安装PyTorch之前,为了管理不同项目的Python环境,通常建议创建一个虚拟环境。虚拟环境可以帮助您隔离不同项目的依赖项,避免不同项目之间的冲突。以下是创建虚拟环境的步骤:

1.打开终端:在确保anaconda已经成功安装的基础上,在Windows上,打开Anaconda Prompt

2.创建虚拟环境:

在终端上运行以下命令(conda create --name lx python=3.10)来创建一个新的虚拟环境。您可以将<env_name>替换为您喜欢的环境名称,例如“lx”

如下图所示,lx即虚拟环境名称,而python=3.10即所安装的python版本

3.激活虚拟环境:
运行以下命令来激活刚刚创建的虚拟环境(conda activate pytorch)。在Windows上,使用activate命令

4.安装PyTorch(CPU):

在激活的虚拟环境中,使用pip安装PyTorch。

输入以下命令行进行安装:pip install torch torchvision torchaudio

要确保命令行执行后下面的这个界面无警告以及报错情况

四.安装后的检验:
打开电脑cmd终端(快捷键 windows+r),输入以下命令行:

python -c "import torch; print(torch.__version__); x = torch.tensor([1, 2, 3]); print(x)"

若出现以下类似界面,即安装成功:

2.7.1+cpu 这一行指的是你所安装的pytorch版本

而False指的是:

torch.cuda.is_available() 返回 False,说明当前环境中没有可用的 CUDA(NVIDIA GPU 支持)

自此,即pytorch安装成功且功能正常。

五.个人安装过程所出现的问题(如有类似情况,可供参考):

在安装pytorch命令行执行后开始安装,但含有警告信息如下:

该警告信息指的是:sympy 安装时生成了一个可执行脚本 isympy.exe,但该脚本所在的目录未被添加到系统的 PATH 环境变量中,因此无法直接在命令行中全局调用

解决办法:

通过命令行快速临时添加:

在cmd终端上输入

setx PATH"%PATH%;C:\Users\11338\AppData\Roaming\Python\Python312\Scripts"

执行后检验是否添加成功:

输入命令行:

isympy --version直接测试该命令行是否能正常运行

能正常运行后重新执行目录四,检验当前pytorch是否成功安装。

六.总结:
 

在安装 PyTorch 时,我遇到了几个关键问题及解决方案:

  1. PyTorch 安装后验证失败

    • 错误:直接在 CMD 输入 Python 代码(如 import torch),导致 'import' 不是内部命令 报错。

    • 解决:必须在 Python 交互环境(python 或 python3)中运行代码,或使用 python -c "import torch" 单行命令。

  2. GPU 支持不可用

    • 现象:torch.cuda.is_available() 返回 False

    • 原因:默认安装的是 CPU 版本。

    • 解决:

      • 确认显卡支持 CUDA 后,重新安装 GPU 版本(如 pip install torch==2.7.1+cu118)。

      • 检查驱动和 CUDA 版本是否匹配。

  3. 环境变量警告(isympy.exe 不在 PATH)

    • 解决:手动添加脚本路径到系统环境变量 PATH,或忽略警告(不影响 PyTorch 使用)。

安装完成后,可顺利运行 PyTorch 代码! 🚀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值