一:判断是否有NVIDIA显卡
在安装PyTorch之前,我们需要判断您的计算机是否安装了NVIDIA显卡,因为PyTorch的GPU版本需要NVIDIA显卡来加速计算。您可以通过以下步骤来判断:
① 打开设备管理器:在Windows上,按下Win键和X键,然后选择“设备管理器”。在macOS上,打开“系统偏好设置”,选择“硬件”选项卡,然后点击“设备管理器”。
② 查看显示适配器:在设备管理器中,展开“显示适配器”或“图形处理器”部分,查看是否有NVIDIA显卡的列表。如果有NVIDIA显卡,那么您的计算机适合安装PyTorch的GPU版本。
如下图所示,若没有NVIDIA显卡,则需要安装CPU版本:
二.anaconda的安装:
首先,访问Anaconda官网(Free Download | Anaconda),下载安装anaconda,详细的安装过程后序会发布。
三.安装pytorch(cpu版本):
首先,确保您的计算机上已安装了合适版本的Python。PyTorch需要Python 3.6或更高版本。同时,您还需要安装pip包管理器,用于安装PyTorch和其他依赖项。所以我们可以通过安装Anaconda来创建一个适合深度学习的Python环境。以下是详细的安装步骤:
在安装PyTorch之前,为了管理不同项目的Python环境,通常建议创建一个虚拟环境。虚拟环境可以帮助您隔离不同项目的依赖项,避免不同项目之间的冲突。以下是创建虚拟环境的步骤:
1.打开终端:在确保anaconda已经成功安装的基础上,在Windows上,打开Anaconda Prompt
2.创建虚拟环境:
在终端上运行以下命令(conda create --name lx python=3.10)来创建一个新的虚拟环境。您可以将<env_name>替换为您喜欢的环境名称,例如“lx”
如下图所示,lx即虚拟环境名称,而python=3.10即所安装的python版本
3.激活虚拟环境:
运行以下命令来激活刚刚创建的虚拟环境(conda activate pytorch)。在Windows上,使用activate
命令
4.安装PyTorch(CPU):
在激活的虚拟环境中,使用pip安装PyTorch。
输入以下命令行进行安装:pip install torch torchvision torchaudio
要确保命令行执行后下面的这个界面无警告以及报错情况
四.安装后的检验:
打开电脑cmd终端(快捷键 windows+r),输入以下命令行:
python -c "import torch; print(torch.__version__); x = torch.tensor([1, 2, 3]); print(x)"
若出现以下类似界面,即安装成功:
2.7.1+cpu 这一行指的是你所安装的pytorch版本
而False指的是:
torch.cuda.is_available()
返回 False
,说明当前环境中没有可用的 CUDA(NVIDIA GPU 支持)
自此,即pytorch安装成功且功能正常。
五.个人安装过程所出现的问题(如有类似情况,可供参考):
在安装pytorch命令行执行后开始安装,但含有警告信息如下:
该警告信息指的是:sympy
安装时生成了一个可执行脚本 isympy.exe
,但该脚本所在的目录未被添加到系统的 PATH
环境变量中,因此无法直接在命令行中全局调用
解决办法:
通过命令行快速临时添加:
在cmd终端上输入
setx PATH"%PATH%;C:\Users\11338\AppData\Roaming\Python\Python312\Scripts"
执行后检验是否添加成功:
输入命令行:
isympy --version直接测试该命令行是否能正常运行
能正常运行后重新执行目录四,检验当前pytorch是否成功安装。
六.总结:
在安装 PyTorch 时,我遇到了几个关键问题及解决方案:
-
PyTorch 安装后验证失败
-
错误:直接在 CMD 输入 Python 代码(如
import torch
),导致'import' 不是内部命令
报错。 -
解决:必须在 Python 交互环境(
python
或python3
)中运行代码,或使用python -c "import torch"
单行命令。
-
-
GPU 支持不可用
-
现象:
torch.cuda.is_available()
返回False
。 -
原因:默认安装的是 CPU 版本。
-
解决:
-
确认显卡支持 CUDA 后,重新安装 GPU 版本(如
pip install torch==2.7.1+cu118
)。 -
检查驱动和 CUDA 版本是否匹配。
-
-
-
环境变量警告(
isympy.exe
不在 PATH)-
解决:手动添加脚本路径到系统环境变量
PATH
,或忽略警告(不影响 PyTorch 使用)。
-
安装完成后,可顺利运行 PyTorch 代码! 🚀