2003年国赛高教社杯数学建模竞赛B题
原题再现
钢铁工业是国家工业的基础之一,铁矿是钢铁工业的主要原料基地。许多现代化铁矿是露天开采的,它的生产主要是由电动铲车(以下简称电铲)装车、电动轮自卸卡车(以下简称卡车)运输来完成。提高这些大型设备的利用率是增加露天矿经济效益的首要任务。
露天矿里有若干个爆破生成的石料堆,每堆称为一个铲位,每个铲位已预先根据铁含量将石料分成矿石和岩石。一般来说,平均铁含量不低于25%的为矿石,否则为岩石。每个铲位的矿石、岩石数量,以及矿石的平均铁含量(称为品位)都是已知的。每个铲位至多能安置一台电铲,电铲的平均装车时间为5分钟。
卸货地点(以下简称卸点)有卸矿石的矿石漏、2个铁路倒装场(以下简称倒装场)和卸岩石的岩石漏、岩场等,每个卸点都有各自的产量要求。从保护国家资源的角度及矿山的经济效益考虑,应该尽量把矿石按矿石卸点需要的铁含量(假设要求都为29.5%1%,称为品位限制)搭配起来送到卸点,搭配的量在一个班次(8小时)内满足品位限制即可。从长远看,卸点可以移动,但一个班次内不变。卡车的平均卸车时间为3分钟。
所用卡车载重量为154吨,平均时速28。卡车的耗油量很大,每个班次每台车消耗近1吨柴油。发动机点火时需要消耗相当多的电瓶能量,故一个班次中只在开始工作时点火一次。卡车在等待时所耗费的能量也是相当可观的,原则上在安排时不应发生卡车等待的情况。电铲和卸点都不能同时为两辆及两辆以上卡车服务。卡车每次都是满载运输。
每个铲位到每个卸点的道路都是专用的宽60的双向车道,不会出现堵车现象,每段道路的里程都是已知的。
一个班次的生产计划应该包含以下内容:出动几台电铲,分别在哪些铲位上;出动几辆卡车,分别在哪些路线上各运输多少次(因为随机因素影响,装卸时间与运输时间都不精确,所以排时计划无效,只求出各条路线上的卡车数及安排即可)。一个合格的计划要在卡车不等待条件下满足产量和质量(品位)要求,而一个好的计划还应该考虑下面两条原则之一:
1.总运量(吨公里)最小,同时出动最少的卡车,从而运输成本最小;
2.利用现有车辆运输,获得最大的产量(岩石产量优先;在产量相同的情况下,取总运量最小的解)。
请你就两条原则分别建立数学模型,并给出一个班次生产计划的快速算法。针对下面的实例,给出具体的生产计划、相应的总运量及岩石和矿石产量。
某露天矿有铲位10个,卸点5个,现有铲车7台,卡车20辆。各卸点一个班次的产量要求:矿石漏1.2万吨、倒装场Ⅰ1.3万吨、倒装场Ⅱ1.3万吨、岩石漏1.9万吨、岩场1.3万吨。
铲位和卸点位置的二维示意图如下,各铲位和各卸点之间的距离(公里)如下表:
| 铲位1 | 铲位2 | 铲位3 | 铲位4 | 铲位5 | 铲位6 | 铲位7 | 铲位8 | 铲位9 | 铲位10 |
矿石漏 | 5.26 | 5.19 | 4.21 | 4.00 | 2.95 | 2.74 | 2.46 | 1.90 | 0.64 | 1.27 |
倒装场Ⅰ | 1.90 | 0.99 | 1.90 | 1.13 | 1.27 | 2.25 | 1.48 | 2.04 | 3.09 | 3.51 |
岩场 | 5.89 | 5.61 | 5.61 | 4.56 | 3.51 | 3.65 | 2.46 | 2.46 | 1.06 | 0.57 |
岩石漏 | 0.64 | 1.76 | 1.27 | 1.83 | 2.74 | 2.60 | 4.21 | 3.72 | 5.05 | 6.10 |
倒装场Ⅱ | 4.42 | 3.86 | 3.72 | 3.16 | 2.25 | 2.81 | 0.78 | 1.62 | 1.27 | 0.50 |
各铲位矿石、岩石数量(万吨)和矿石的平均铁含量如下表:
| 铲位1 | 铲位2 | 铲位3 | 铲位4 | 铲位5 | 铲位6 | 铲位7 | 铲位8 | 铲位9 | 铲位10 |
矿石量 | 0.95 | 1.05 | 1.00 | 1.05 | 1.10 | 1.25 | 1.05 | 1.30 | 1.35 | 1.25 |
岩石量 | 1.25 | 1.10 | 1.35 | 1.05 | 1.15 | 1.35 | 1.05 | 1.15 | 1.35 | 1.25 |
铁含量 | 30% | 28% | 29% | 32% | 31% | 33% | 32% | 31% | 33% | 31% |

第一问求解思路
摘要
钢铁工业依赖露天铁矿开采,提升电铲和自卸卡车的利用率是增强矿山经济效益的关键。本文围绕露天矿生产车辆的分配问题,采用分阶段优化方法并通过构建启发式算法,建立了车辆调度优化模型,给出车辆调度的分配方案。
针对原则一,为简化问题,本文采用分阶段的优化方法。首先,第一阶段以道路通 行能力、品位限制和卸点能力为约束条件,构建以总运量最小为目标的单目标优化模型。 其次,通过求解该模型,得到 7
台电铲分别在
铲位
1
、
2
、
3
、
4
、
8
、
9
、
10
进行作业,形 成 12
条
运输路线,最小总运量为
85629
吨公里
。然后,第二阶段在此基础上,采用固 定派车与联合派车策略,以所需车辆数最少为目标构建启发式算法。接着,求得最少所 需卡车数为 16
辆
,其中固定卡车
8
辆、联合卡车
8
辆,具体分配方案见
表
1
和
表
2
。 最后,在该调度方案下,矿石产量 3.82
万吨
、岩石产量
3.22
万吨
,并进一步计算各车 辆利用率,详见图
3
。
2.1 对于原则一的分析
原则一的核心是在最小化总运量的基础上,进一步减少所使用的卡车数量,从而实现整体的最低运输成本。其本质可视为一类以运输成本最小化为目标的生产调度优化问题。首先,由于最小化总运量与最小化车辆数存在目标冲突,故选择采用两阶段优化方法进行求解。其次,第一阶段以总运量最小为目标,构建考虑道路通行能力、品位限制 与卸点能力的单目标优化模型,得到总运量最小的卡车分配方案。然后,第二阶段以第 一阶段为基础,采用固定派车与联合派车策略,以最小化车辆数为目标构建启发式算法。 最后,得到车辆数最小的卡车分配方案。

五、 模型的建立与求解
为简化问题,采用分阶段优化的方法。首先,在卸点能力、品位限制、道路通行能力的约束条件下,建立以总运量最小为目标的优化模型。其次,采用固定派车和联合派车的策略,构建以最小化车辆数为目标的启发式算法。最后,按照岩石产量优先、矿石产量其次、总运量最小的分层优化思路,构建单目标优化模型并进行求解,得到车辆调度方案。
5.1 运输成本最小化时生产计划
在原则一中,存在着两个目标:最小化总运量和最小化卡车的数量。然而,这两个目标存在冲突即为了最小化总运量,调度方案倾向于采用更多短途运输,可能导致卡车使用数量增加。若追求卡车数量最少,则可能倾向于分配较多的长途运输,从而增加总运量。
5.1.1 第一阶段最小化总运量的规划

为保证电铲的实际使用数量不超过其可用总量,需在模型中设置电铲使用数量约束,
即:
在设备装卸过程中,主要是通过电铲和卡车来完成。根据问题背景,说明了电铲的 平均装车需要 5
分钟,卡车的平均卸车需要
3
分钟。尽管电铲和卡车在一个班次(
8
小 时)内可实现连续作业,但其服务能力受限于设备本身的作业强度与运行安全要求。根 据作业参数,在一个班次内,单台电铲的最大作业次数应为 96
次,而卸点能接受车次 的理论最大值为 160
次。为防止铲车过载,铲车的装车次数应小于其理论最大值其表达是为:
在进行露天矿运载时由于每个铲位都有相应的矿石量和岩石量,故从每个铲位运载 出去的总矿石量和总岩石量不能超过该铲位所具有的储存量。据此,矿石储存约束为:
岩石储存约束为:
在每个班次内,各卸点均有相应的产量需求约束条件,即从各铲位运输至各卸点的 矿石和岩石总量必须满足该卸点的最低产量要求。因此,矿石卸点的产量需求约束可表述为:
出于保护国家资源和经济效益的考虑,运往矿石卸点的矿石需满足铁品位约束条件,即各卸点接收矿石的铁含量应控制在 28.5%
至
30.5%
之间。该品位限制约束可表述为:
在露天矿生产运输过程中,卡车等待会显著增加能耗,因此需要优化车辆调度以避
免等待情况,确保同一条路线上的车辆不发生冲突。由于铲车的装车需要
5
分钟,与卸
货时间相比时长多
3
分钟,因此装车环节成为运输路线的时间瓶颈。
基于此,每台电铲在同一时段仅能为单辆卡车提供服务,且相邻卡车的到达时间间
隔不得少于
5
分钟。为确保运输系统的流畅性,必须严格控制各运输路线上的卡车数量,
从而消除车辆排队等待现象。基于上述分析,本文建立如下道路通行能力约束条件:
首先,计算每辆卡车运行一周期(重载行驶、空载返回、装车和卸车)所用的时间,
其表达式为:
观察图
2
可知,蓝色虚线框表示启用电铲的铲位,颜色深度则反映了该铲位与各卸 点之间的运输次数。通过对该图的分析,有 7
台铲车分别位于铲位
1
、铲位
2
、铲位
3
、 铲位 4
、铲位
8
、铲位
9
和铲位
10
进行作业,且运输路线共有
12
条。除此之外,还发 现铲位 1
到岩石漏卸点的运输次数最多(
81
次),在岩石运输中承担了主要任务;而铲 位 3
到倒装场
II
的运输次数较少(
2
次),且铲位
5
、铲位
6
和铲位
7
未安排运输任务。 从整体上看,运输路径具有明显的集中性特征,部分铲位承担了主要的装车任务。 特别是通向矿石卸点的路径,其运输频率显著高于其他方向这种调度结果在一定程度上 反映了路径距离对运输分配的影响。同时,也体现了在满足矿石品位要求的前提下,优 先选择品位合适且运输代价较低的铲位。另一方面,岩石运输则相对分散,主要由接近 岩石卸点的铲位负责,说明调度方案在满足产量需求的同时,兼顾了资源空间分布与运输成本的综合优化。
5.1.2 第二阶段最小化车辆调度优化
在完成第一阶段最小化总运量的物流规划后,已获得各路线最优运输车次 。第二 阶段需在保证总运量不变的前提下,最小化卡车使用数量。该问题的核心矛盾在于:卡 车作为可调度资源,可通过服务多条路线提高利用率,但路线切换可能产生空驶成本。 因此,本文使用启发式算法将车辆调度分为固定派车和联合派车的策略实现卡车资 源的最优配置。对于固定派车指的是整个班次内仅服务于一条固定路线(从特定铲位到特定卸点);而联合派车是指一辆卡车可以服务于多条路线,以提高卡车利用率。
1
)启发式算法的构建
2
)结果分析
观察表
1
可知,固定派车用到的铲位为
1
、
2
、
3
、
4
、
8
、
9
、
10
,共有
7
条运输路 线,使用了 8
辆卡车。其中运输次数最多的是卡车
8
(共
45
次),运输路径是从铲位
10 到倒装场;而最少的是卡车 5
(共
29
次),运输路径是从铲位
8
到矿石漏。总体而言, 固定派车的各运输路线的运输次数都集中在 29-45
区间,且运输次数较多。
观察表
2
可知,联合派车用到的铲位为
1
、
2
、
3
、
4
、
8
、
10
。卡车
9
从铲位
1
到岩石漏运输次数为最高次数 37
次,卡车
11
与卡车
10
都是由铲位
2
出发运输,分别运输到矿石漏运输次数为 13
和倒装场
II13
次,卡车
15
与卡车
16
则是从铲位
10
运输到矿石漏 11
次和倒装场
II25
次。
综上对求解结果进行汇总,如表 3 所示。
观察图
3
可知
,
总卡车数量为
16
,卡车
1
到卡车
8
都为固定卡车,卡车
9
到卡车 16为联合卡车,固定卡车的利用率都较高,而联合卡车的利用率较低,其中卡车 2 的固定路线为铲位 1 到岩石漏,其利用率为最高到达 99.5%,卡车 5 的固定路线为铲位 8 到矿石漏,其利用率在固定路线中最低为 97.5%。联合卡车中联合卡车 11、联合卡车 15、联合卡车 12 运输了 2 个卸点,其中联合卡车 11 的联合路线分别为铲位 2 到矿石漏其利用率最高为 81.9%、铲位 2 到倒装场 1 其利用率最低为 7.7%,联合卡车 15 的联合路线为铲位 10 到倒装场Ⅱ和铲位 10 到岩场其利用率为 54.4%和 31.7%,联合卡车 12 的联合路线为铲位 3 到岩石漏和倒装场 I,其利用率为 25.2%和 13.3%。
思政论
本人也是一个数学建模的参赛者,是一个建模手我知道对于新手小白,刚参加数学建模培训不明白数学建模到底是干什么?、想学但不知道从哪开始学?、看一些课程书籍发现全都看不懂?书上写的数学模型或算法,列了复杂公式定义而代码注释很少却不知道该怎么编写?我想告述大家的是数学建模不是数学,参加比赛也不是考试,应试的学习数学建模不是数学,参加比赛更不是考试,应试的学习方法失效了,听课,老师不会考虑新手的感受,自学看书,更像在看天书且网上的资源少之又少,所以我将在油猴上免费分享自己的建模思路和一些实质性的资料,给大家参考,这样一来既是相互学习又可相互进步,希望大家可以给个好评和关注、收藏,你们的支持是我更新下去的动力,因为有点太晚了,希望大家多点赞和评论对于觉得思路好的话我明天将免费更新代码。
对于新手小白我也收集了一些实质性的资料在这个资料桶中有清风和北海两个老师的课程,跟着这两个老师学习,无论是对于大数据的题目还是优化的体型都可以完美的掌握,并且该资料桶中还附有各种数学建模学习的书籍https://m.tb.cn/h.hh1fUY3?tk=8ETO4Zktwe5