【R语言】基于R语言piecewiseSEM结构方程模型在生态环境领域实践技术应用

结构方程模型(Sructural Equation Modeling,SEM)可分析系统内变量间的相互关系,并通过图形化方式清晰展示系统中多变量因果关系网,具有强大的数据分析功能和广泛的适用性,是近年来生态、进化、环境、地学、医学、社会、经济等众多领域应用十分广泛的统计方法。在R语言结构方程程序包中,piecewiseSEM语法简洁,将结构方程模型拆分为多个组分(component)模型进行拟合和评估,可与混合效应模型实现无缝对接,在应对研究系统中复杂数据结构和类型,如多层数据嵌套和非正态分布类型变量(二项分布、泊松分布),有明显的优势。因而,在生态环境领域得到广泛应用,是该领域颇受欢迎的结构方程模型程序包。将基于R语言piecewiseSEM程序包,通过理论介绍和实际操作相结合的方式,由浅入深地系统介绍结构方程模型的建立、拟合、评估、筛选和结果展示的全过程。我们筛选大量经典案例,这些案例来主流期刊,具有很大的参考和借鉴价值。训练内容包括R语言入门、结构方程模型原理简介、piecewise包简介及应用案例、非正态分布变量分析、嵌套/分层/多水平数据分析、重复测量和时间数据分析、空间自相关数据分析、系统发育数据分析、复合变量分析、分类变量、非线性数据及数据分组分析。

专题01、R/Rstudio简介及入门 

(1)R及Rstudio介绍:背景、软件及程序包安装、基本设置等

(2)R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等

(3)R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)

(4)R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储

图片

专题02、结构方程模型(SEM)介绍

(1)SEM的定义、生态学领域应用及历史回顾

(2)SEM的基本结构

(3)SEM的估计方法

(4)SEM的路径规则

(5)SEM路径参数的含义

(6)SEM分析样本量及模型可识别规则

(7)SEM构建基本流程

图片

专题03、 piecewise包简介及应用案例

(1)结构方程模型在生态学研究中的应用介绍及要点回顾

(2)piecewiseSEM结构方程模型基本原理

(3)piecewiseSEM结构方程模型构建应用案例

图片

专题04、piecewiseSEM非正态分布变量分析

(1)非正态分布数据VS非正态分布变量

(2)piecewiseSEM处理非正态变量的注意事项

(3)piecewiseSEM处理二项分布和泊松分布案例

图片

专题05、piecewiseSEM嵌套/分层/多水平数据分析

(1)嵌套/多水平/分层数据概述

(2)piecewiseSEM与混合/多水平/分层模型的结合

(3)均衡和不均衡结构嵌套/多水平/分层数据结构方程实例

图片

专题06、piecewiseSEM处理重复测量和时间数据

(1)时间重复测量数据特点简介

(2)时间/重复测量数据的自相关问题

(3)piecewiseSEM处理时间自相关问题实例

图片

专题07、piecewiseSEM处理空间自相关数据

(1)数据空间自相关概述  

(2)piecewiseSEM处理空间自相关数据基本原理

(3)piecewiseSEM处理空间自相关问题实例

图片

专题08、piecewiseSEM处理系统发育数据

(1)系统发育相关问题介绍              

(2)系统发育相关数据纳入结构方程模型实现途径

(3)piecewiseSEM系统发育相关数据纳入结构方程实例

图片

专题09、piecewiseSEM复合变量(composite)分析

(1)复合变量的定义及在生态学领域应用情景分析

(2)piecewiseSEM复合变量分析实现途径

(3)piecewiseSEM复合变量分析案例

图片

专题10、piecewiseSEM处理分类变量

(1)分类变量介绍

(2)分类变量路径系数含义及表达方式

(3)外生变量为分类变量分析案例

图片

专题11、piecewiseSEM非线性关系数据分析

(1)非线性数据简介

(2)piecewiseSEM处理非线性数据途径及案例

(3)piecewiseSEM处理变量间交互作用关系方式及案例

图片

专题12、piecewiseSEM数据分组(multigroup)分析

(1)分组数据vs分类变量vs交互作用

(2)数据分组分析实现途径

(3)二分组及多分组模型分析及结果表达

(4)分组分析案例

图片

### 使用R语言实现结构方程模型(SEM)用于微生物数据分析 #### 安装必要的软件包 为了构建和评估结构方程模型,在R环境中需安装特定的库。对于SEM建模,`lavaan`是一个强大的工具来定义并拟合模型[^2]。 ```r install.packages("lavaan") install.packages("piecewiseSEM") ``` #### 加载所需的数据集与函数库 加载已安装好的程序包,并准备待分析的数据集。假设有一个名为microbiome_data.csv文件包含了关于不同变量间潜在关联的信息,这些信息可能涉及微生物丰度、环境因子等。 ```r library(lavaan) library(piecewiseSEM) # 假设读取的是CSV格式的本地文件 data <- read.csv("path/to/microbiome_data.csv") head(data) # 查看前几行数据以了解其结构 ``` #### 构造理论框架下的路径图 基于现有文献或先验知识设定微生物群落特征与其他因素之间的因果联系。这里简化表示为某些环境条件影响着特定类型的细菌数量变化;而后者又反过来作用于生态系统功能指标。 例如: - pH值影响土壤中硝化菌的数量; - 硝化菌数量影响氮循环速率。 这可以被表达成如下形式: ```plaintext nitrogen_cycle_rate ~ nitrifying_bacteria_count nitrifying_bacteria_count ~ soil_pH ``` #### 编写SEM公式并创建模型对象 根据上述提出的假设建立相应的统计模型描述各个变量间的相互关系。下面给出了一段具体的代码片段用来说明这一点。 ```r model_formula <- ' nitrogen_cycle_rate ~ nitrifying_bacteria_count nitrifying_bacteria_count ~ soil_pH ' sem_model <- sem(model_formula, data = data) summary(sem_model, standardized = TRUE, fit.measures = TRUE) ``` 此部分利用了`lavaan`中的`sem()`函数来进行协方差基底上的参数估计以及整体适配优劣程度衡量工作[^3]。 #### 解析输出结果 通过调用`summary()`方法可以获得有关所构建SEM的重要细节,包括但不限于标准化系数大小、显著性水平测试p-value、各类拟合指数(GFI, CFI...)等等。这对于判断我们的理论设想是否合理至关重要。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值