大规模语言模型从理论到实践 推理规划
关键词:大规模语言模型、推理规划、深度学习、Transformer、图灵奖、自然语言处理
1. 背景介绍
近年来,深度学习技术取得了飞速发展,特别是大规模语言模型(LLM)的出现,彻底改变了自然语言处理(NLP)领域的面貌。从 GPT-3 到 LaMDA,这些模型展现出惊人的文本生成、翻译、问答和代码生成能力,引发了广泛的关注和研究热潮。然而,LLM 的应用场景远不止于此。
推理规划是人工智能领域的核心任务之一,它涉及从给定的知识和目标出发,设计出一系列步骤来实现目标。传统的推理规划方法主要依赖符号逻辑和规则库,但这些方法在面对复杂、开放世界的场景时往往表现力不足。而 LLMs 的强大文本理解和生成能力为推理规划带来了新的可能性。
2. 核心概念与联系
2.1 大规模语言模型 (LLM)
LLM 是指参数量巨大、训练数据海量的人工智能模型,能够学习和理解复杂的语言模式。它们通常基于 Transformer 架构,并通过大量的文本数据进行预训练,从而获得强大的文本表示能力。
2.2 推理规划
推理规划是指在给定初始状态和目标状态的情况下,设计出一系列操作步骤来实现状态转换的过程。它涉及知识表示、逻辑推理、计划生成等多个方面。
2.3 LLM 在推理规划中的应用
LLMs 可以通过以下方式应