基于MATLAB的语音信号处理系统

基于MATLAB的语音信号处理系统+界面+近两万字文档
程序可实现功能如下:
1.读取语音信号并加噪声
2.对加噪信号进行布拉克曼低通滤波和巴特沃斯低通滤波
3.分别输出以上四种波形的时域波形和频谱图
4.将这些功能集成到一个界面上简洁展示
在这里插入图片描述
以下文字及示例代码仅供参考

基于 MATLAB 的语音信号处理系统


🎯 一、系统目标

  • 实现语音信号的采集与播放
  • 支持语音信号的时域和频域分析
  • 提供基本语音处理功能(如降噪、滤波、端点检测、特征提取)
  • 可视化语音信号波形图、频谱图、语谱图等
  • 提供简单易用的图形用户界面(GUI)

🧱 二、系统结构图

[GUI界面]
   ↓
[语音输入] → [语音处理模块] → [结果显示]
   ↓
[保存输出]

在这里插入图片描述

📦 三、所需工具箱

确保你安装了以下 MATLAB 工具箱:

  • Audio Toolbox(语音采集、播放、音频文件读写)
  • Signal Processing Toolbox(FFT、滤波器设计、谱分析等)
  • DSP System Toolbox(可选,用于高级语音处理算法)
  • MATLAB App Designer 或 GUIDE(推荐使用 App Designer 构建 GUI)

🖥️ 四、GUI 设计(App Designer 推荐)

你可以使用 App Designer 创建一个现代风格的 GUI,包含如下控件:

控件类型功能说明
Button录音、播放、停止、分析、保存结果
Axes显示语音波形图、频谱图、语谱图
ListBox / Dropdown选择处理方法(如滤波、降噪、VAD 等)
Slider / Edit Field调整参数(如滤波器截止频率、增益等)
Label / Edit Field显示状态信息或分析结果

🧪 五、核心语音处理功能(示例代码)

1. 录音与播放

% 开始录音
function startButtonPushed(app, event)
    fs = 44100; % 采样率
    duration = 5; % 录音时间
    app.fs = fs;
    recObj = audiorecorder(fs, 16, 1); % 单声道
    recordblocking(recObj, duration);
    app.audioData = getaudiodata(recObj);
    plot(app.UIAxes, (1:length(app.audioData))/fs, app.audioData);
    title(app.UIAxes, '语音波形');
end

% 播放语音
function playButtonPushed(app, event)
    if ~isempty(app.audioData)
        player = audioDeviceWriter('SampleRate', app.fs);
        step(player, app.audioData);
    end
end

在这里插入图片描述


2. 频谱分析

% FFT 分析
function fftButtonPushed(app, event)
    x = app.audioData;
    X = fft(x);
    X = abs(X(1:floor(end/2)+1));
    f = (0:length(X)-1) * app.fs / length(x);
    plot(app.FFTAxes, f, X);
    xlabel(app.FFTAxes, '频率(Hz)');
    ylabel(app.FFTAxes, '幅值');
    title(app.FFTAxes, '语音频谱');
end

3. 语谱图(Spectrogram)

% 生成语谱图
function spectrogramButtonPushed(app, event)
    x = app.audioData;
    Fs = app.fs;
    spectrogram(x, hamming(256), 128, 256, Fs, 'yaxis', 'Parent', app.SpectrogramAxes);
    title(app.SpectrogramAxes, '语音语谱图');
end

4. 带通滤波器(语音增强)

% 设计带通滤波器(如 300Hz - 3400Hz)
function filterButtonPushed(app, event)
    d = designfilt('bandpassiir', 'FilterOrder', 6, ...
        'HalfPowerFrequency1', 300, 'HalfPowerFrequency2', 3400, ...
        'SampleRate', app.fs);
    
    y = filter(d, app.audioData); % 应用滤波器
    app.filteredAudio = y;
    
    plot(app.FilteredAxes, (1:length(y))/app.fs, y);
    title(app.FilteredAxes, '滤波后语音');
end

5. 语音端点检测(VAD)

% 简单基于能量的端点检测
function vadButtonPushed(app, event)
    x = app.audioData;
    frameSize = 256;
    energy = buffer(x.^2, frameSize, frameSize/2, 'nodelay');
    energy = mean(energy, 1)';
    threshold = 0.01 * max(energy);
    speechIndices = find(energy > threshold);
    msgbox(app.UIFigure, ['检测到语音段:第 ', num2str(speechIndices(1)), ' 到 ', num2str(speechIndices(end)), ' 帧']);
end

💾 六、保存与导出

添加“保存”按钮将处理后的语音保存为 .wav 文件:

audiowrite('processed_audio.wav', app.filteredAudio, app.fs);
msgbox(app.UIFigure, '语音已保存为 processed_audio.wav');

📘 七、推荐论文方向(如需撰写期刊)

如果你希望将其扩展为一篇期刊论文(例如 IEEE Access、Speech Communication、Applied Sciences),可以考虑以下研究方向:

  • 基于深度学习的语音增强系统(如 DNN、LSTM、Transformer)
  • 语音端点检测(VAD)优化算法研究
  • 多麦克风语音信号分离与定位
  • 声纹识别与身份验证系统
  • 语音合成与文本转语音(TTS)系统
  • 实时语音识别与关键词唤醒(KWS)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值