基于MATLAB的语音信号处理系统+界面+近两万字文档
程序可实现功能如下:
1.读取语音信号并加噪声
2.对加噪信号进行布拉克曼低通滤波和巴特沃斯低通滤波
3.分别输出以上四种波形的时域波形和频谱图
4.将这些功能集成到一个界面上简洁展示
以下文字及示例代码仅供参考
文章目录
基于 MATLAB 的语音信号处理系统
🎯 一、系统目标
- 实现语音信号的采集与播放
- 支持语音信号的时域和频域分析
- 提供基本语音处理功能(如降噪、滤波、端点检测、特征提取)
- 可视化语音信号波形图、频谱图、语谱图等
- 提供简单易用的图形用户界面(GUI)
🧱 二、系统结构图
[GUI界面]
↓
[语音输入] → [语音处理模块] → [结果显示]
↓
[保存输出]
📦 三、所需工具箱
确保你安装了以下 MATLAB 工具箱:
- Audio Toolbox(语音采集、播放、音频文件读写)
- Signal Processing Toolbox(FFT、滤波器设计、谱分析等)
- DSP System Toolbox(可选,用于高级语音处理算法)
- MATLAB App Designer 或 GUIDE(推荐使用 App Designer 构建 GUI)
🖥️ 四、GUI 设计(App Designer 推荐)
你可以使用 App Designer 创建一个现代风格的 GUI,包含如下控件:
控件类型 | 功能说明 |
---|---|
Button | 录音、播放、停止、分析、保存结果 |
Axes | 显示语音波形图、频谱图、语谱图 |
ListBox / Dropdown | 选择处理方法(如滤波、降噪、VAD 等) |
Slider / Edit Field | 调整参数(如滤波器截止频率、增益等) |
Label / Edit Field | 显示状态信息或分析结果 |
🧪 五、核心语音处理功能(示例代码)
1. 录音与播放
% 开始录音
function startButtonPushed(app, event)
fs = 44100; % 采样率
duration = 5; % 录音时间
app.fs = fs;
recObj = audiorecorder(fs, 16, 1); % 单声道
recordblocking(recObj, duration);
app.audioData = getaudiodata(recObj);
plot(app.UIAxes, (1:length(app.audioData))/fs, app.audioData);
title(app.UIAxes, '语音波形');
end
% 播放语音
function playButtonPushed(app, event)
if ~isempty(app.audioData)
player = audioDeviceWriter('SampleRate', app.fs);
step(player, app.audioData);
end
end
2. 频谱分析
% FFT 分析
function fftButtonPushed(app, event)
x = app.audioData;
X = fft(x);
X = abs(X(1:floor(end/2)+1));
f = (0:length(X)-1) * app.fs / length(x);
plot(app.FFTAxes, f, X);
xlabel(app.FFTAxes, '频率(Hz)');
ylabel(app.FFTAxes, '幅值');
title(app.FFTAxes, '语音频谱');
end
3. 语谱图(Spectrogram)
% 生成语谱图
function spectrogramButtonPushed(app, event)
x = app.audioData;
Fs = app.fs;
spectrogram(x, hamming(256), 128, 256, Fs, 'yaxis', 'Parent', app.SpectrogramAxes);
title(app.SpectrogramAxes, '语音语谱图');
end
4. 带通滤波器(语音增强)
% 设计带通滤波器(如 300Hz - 3400Hz)
function filterButtonPushed(app, event)
d = designfilt('bandpassiir', 'FilterOrder', 6, ...
'HalfPowerFrequency1', 300, 'HalfPowerFrequency2', 3400, ...
'SampleRate', app.fs);
y = filter(d, app.audioData); % 应用滤波器
app.filteredAudio = y;
plot(app.FilteredAxes, (1:length(y))/app.fs, y);
title(app.FilteredAxes, '滤波后语音');
end
5. 语音端点检测(VAD)
% 简单基于能量的端点检测
function vadButtonPushed(app, event)
x = app.audioData;
frameSize = 256;
energy = buffer(x.^2, frameSize, frameSize/2, 'nodelay');
energy = mean(energy, 1)';
threshold = 0.01 * max(energy);
speechIndices = find(energy > threshold);
msgbox(app.UIFigure, ['检测到语音段:第 ', num2str(speechIndices(1)), ' 到 ', num2str(speechIndices(end)), ' 帧']);
end
💾 六、保存与导出
添加“保存”按钮将处理后的语音保存为 .wav
文件:
audiowrite('processed_audio.wav', app.filteredAudio, app.fs);
msgbox(app.UIFigure, '语音已保存为 processed_audio.wav');
📘 七、推荐论文方向(如需撰写期刊)
如果你希望将其扩展为一篇期刊论文(例如 IEEE Access、Speech Communication、Applied Sciences),可以考虑以下研究方向:
- 基于深度学习的语音增强系统(如 DNN、LSTM、Transformer)
- 语音端点检测(VAD)优化算法研究
- 多麦克风语音信号分离与定位
- 声纹识别与身份验证系统
- 语音合成与文本转语音(TTS)系统
- 实时语音识别与关键词唤醒(KWS)