Q学习在金融风控中的应用:欺诈检测新方法
关键词:Q学习、强化学习、金融风控、欺诈检测、序列决策
摘要:本文将带您走进“AI侦探”的世界——用Q学习技术解决金融欺诈检测难题。我们会从“小朋友学骑自行车”的故事讲起,逐步拆解Q学习的核心逻辑,结合金融风控场景解释如何用“经验手册”(Q表)识别欺诈交易,最后通过实战代码演示如何训练一个智能的“反欺诈小助手”。无论您是金融科技从业者还是AI爱好者,都能轻松理解Q学习与金融风控的“化学反应”。
背景介绍
目的和范围
金融行业每天处理着数以亿计的交易,其中隐藏着大量欺诈行为(如信用卡盗刷、虚假贷款申请)。传统欺诈检测方法(规则引擎、监督学习)存在两大痛点:
- 规则滞后:新欺诈手段出现时,规则需要人工更新,像“用去年的地图找今年的路”;
- 对抗性弱:欺诈分子会针对性“绕过”模型(例如模仿正常交易模式),监督学习模型容易被“欺骗”。
本文将聚焦一种“能自己进化”的AI技术——Q学习(Q-Learning),它通过与“欺诈环境”互动,动态优化检测策略,为金融风控提供了新思路。
预期读者
- 金融科技公司风控岗从业者(想了解AI新技术如何落地);
- AI爱好者(对强化学习在实际场景的应用