NLP学习路线图(二十二): 循环神经网络(RNN)

在自然语言处理(NLP)的广阔天地中,序列数据是绝对的核心——无论是流淌的文本、连续的语音还是跳跃的时间序列,都蕴含着前后紧密关联的信息。传统神经网络如同面对一幅打散的拼图,无法理解词语间的顺序关系,注定在序列任务上举步维艰。而循环神经网络(RNN)的诞生,正是为了解决这一核心挑战,为机器赋予了处理序列信息的记忆能力

一、序列数据:NLP世界的基石

序列数据无处不在:

  • 文本序列: "我爱自然语言处理" – 每个字的位置都影响语义

  • 语音信号: 随时间变化的声波,前后帧高度相关

  • 时间序列: 股票价格、气象数据、用户行为日志

关键特性: 序列中元素的顺序至关重要。"猫追老鼠"与"老鼠追猫"意义截然相反。传统神经网络(如MLP、CNN)的固定输入输出结构无法有效建模这种动态的、长度可变的依赖关系。


二、RNN:赋予网络记忆的灵魂

RNN的核心思想直击要害:引入“记忆”概念,使网

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摸鱼许可证

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值