实战Kaggle比赛:狗的品种识别(ImageNet Dogs)

比赛链接:Dog Breed Identification | Kaggle

在这场比赛中,我们将识别120类不同品种的狗。 这个数据集实际上是著名的ImageNet的数据集子集。

这里我们选择小批量进行训练出于学习目的

代码实现

先导入

import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l

下载小数据集


d2l.DATA_HUB['dog_tiny'] = (d2l.DATA_URL + 'kaggle_dog_tiny.zip',
                            '0cb91d09b814ecdc07b50f31f8dcad3e81d6a86d')

# 如果使用Kaggle比赛的完整数据集,请将下面的变量更改为False
demo = True
if demo:
    data_dir = d2l.download_extract('dog_tiny')
else:
    data_dir = os.path.join('..', 'data', 'dog-breed-identification')

划分数据

def reorg_dog_data(data_dir, valid_ratio):
    labels = d2l.read_csv_labels(os.path.join(data_dir, 'labels.csv'))
    d2l.reorg_train_valid(data_dir, labels, valid_ratio)
    d2l.reorg_test(data_dir)


batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_dog_data(data_dir, valid_ratio)

数据增强


transform_train = torchvision.transforms.Compose([
    # 随机裁剪图像,所得图像为原始面积的0.08~1之间,高宽比在3/4和4/3之间。
    # 然后,缩放图像以创建224x224的新图像
    torchvision.transforms.RandomResizedCrop(224,scale=(0.8,1.0),ratio=(0.75,1.3)),
    # 随机水平翻转图像
    torchvision.transforms.RandomHorizontalFlip(),
    # 随机变化亮度、对比度和饱和度
    torchvision.transforms.ColorJitter(brightness=0.4,contrast=0.4,saturation=0.4),
    torchvision.transforms.ToTensor(),
    # 标准化图像
    torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
transform_test = torchvision.transforms.Compose([
    torchvision.transforms.Resize(256),
    torchvision.transforms.CenterCrop(224),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
    

dataset

train_ds, train_valid_ds = [torchvision.datasets.ImageFolder(
    os.path.join(data_dir, 'train_valid_test', folder),
    transform=transform_train) for folder in ['train', 'train_valid']]

valid_ds, test_ds = [torchvision.datasets.ImageFolder(
    os.path.join(data_dir, 'train_valid_test', folder),
    transform=transform_test) for folder in ['valid', 'test']]

dataset iter

train_iter,train_valid_iter=[torch.utils.data.DataLoader( dataset,batch_size=32,shuffle=True,num_workers=4,drop_last=True) for dataset in [train_ds,train_valid_ds]]
valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False,
                                         drop_last=True)

test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False,
                                        drop_last=False)

迁移学习

# 迁移学习,不重新训练用于特征提取的预训练模型,训练的小型自定义输出网络替换原始输出层
# 微调是迁移学习的一种具体技术,指在预训练模型的基础上,通过继续训练(调整部分或全部参数)来适应新任务,FLOPS大
# 这里我们使用迁移学习,计算量小,只需要训练一个小型自定义输出网络
def get_net(devices):
    model=torchvision.models.vit_b_16(pretrained=True)
     # 获取原始分类头的输入特征维度
    num_classifier_feature = model.heads.head.in_features
    # 定义一个新的输出网络,共有120个输出类别
    model.heads.head = nn.Sequential(
        nn.Linear(num_classifier_feature, 120)
    )
    # 将模型移动到指定设备(如GPU)
    model = model.to(devices[0])
    
    # 冻结全部
    for param in model.parameters():
        param.requires_grad = False
    
    # 只训练新添加的分类头(解冻)
    for param in model.heads.head.parameters():
        param.requires_grad = True
    
    return model

loss评估函数

loss = nn.CrossEntropyLoss(reduction='none')

def evaluate_loss(data_iter, net, devices):
    l_sum, n = 0.0, 0
    for features, labels in data_iter:
        features, labels = features.to(devices[0]), labels.to(devices[0])
        outputs = net(features)
        l = loss(outputs, labels)
        l_sum += l.sum()
        n += labels.numel()
    return (l_sum / n).to('cpu')

train code

def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
          lr_decay):
    # 只训练小型自定义输出网络
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    trainer = torch.optim.SGD((param for param in net.parameters()
                               if param.requires_grad), lr=lr,
                              momentum=0.9, weight_decay=wd)
    scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)
    num_batches, timer = len(train_iter), d2l.Timer()
    legend = ['train loss']
    if valid_iter is not None:
        legend.append('valid loss')
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=legend)
    for epoch in range(num_epochs):
        metric = d2l.Accumulator(2)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            features, labels = features.to(devices[0]), labels.to(devices[0])
            trainer.zero_grad()
            output = net(features)
            l = loss(output, labels).sum()
            l.backward()
            trainer.step()
            metric.add(l, labels.shape[0])
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[1], None))
        measures = f'train loss {metric[0] / metric[1]:.3f}'
        if valid_iter is not None:
            valid_loss = evaluate_loss(valid_iter, net, devices)
            animator.add(epoch + 1, (None, valid_loss.detach().cpu()))
        scheduler.step()
    if valid_iter is not None:
        measures += f', valid loss {valid_loss:.3f}'
    print(measures + f'\n{metric[1] * num_epochs / timer.sum():.1f}'
          f' examples/sec on {str(devices)}')
devices, num_epochs, lr, wd = d2l.try_all_gpus(), 30, 1e-4, 2e-4
lr_period, lr_decay, net = 2, 0.9, get_net(devices)
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
      lr_decay)
# train loss 0.215, valid loss 0.399
# 150.5 examples/sec on [device(type='cuda', index=0)]

可以看到30轮后面差不多就收敛了,当然还有很多提升空间,比如数据增强or使用vit_l_16或者更大的预训练模型做迁移学习,这里不多加概述

一个低loss的代码实现:nb.pretrained.vit - Loss : 0.09921

完整代码实现:dive-into-deep-learning/d2l/dog-breed-identification/main.ipynb at main · hllqkb/dive-into-deep-learning

### Kaggle 的种类识别比赛实战经验、教程与资源 #### 数据集准备 对于参加Kaggle上的种分类竞赛,获取高质量的数据集至关重要。通常情况下,参赛者会利用官方提供的数据集作为基础训练材料[^1]。这些数据集中包含了不同品种犬只的照片以及对应的标签。 #### 特征工程 为了提高模型性能,在图像处理方面可以采用多种预处理技术来增强特征提取效果。例如调整图片大小至统一规格以便于输入神经网络;应用色彩空间转换(如RGB转灰度图)、直方图均衡化等方法改善视觉质量;还可以尝试随机裁剪、旋转和平移等方式扩充样本数量并增加多样性。 #### 模型选择与优化 针对此类多类别分类任务,卷积神经网络(CNNs)是一个非常有效的解决方案。ResNet, InceptionV3 和 EfficientNet 这样的先进架构已经被证明能够取得很好的成绩。除了选用合适的骨干网之外,还需要注意超参数调优工作,比如学习率衰减策略设置合理的学习速率范围有助于加速收敛过程减少过拟合风险。 ```python import tensorflow as tf from tensorflow.keras.applications import ResNet50 from tensorflow.keras.layers import Dense, GlobalAveragePooling2D from tensorflow.keras.models import Model base_model = ResNet50(weights='imagenet', include_top=False) x = base_model.output x = GlobalAveragePooling2D()(x) predictions = Dense(num_classes, activation='softmax')(x) model = Model(inputs=base_model.input, outputs=predictions) ``` #### 训练技巧 - 使用迁移学习:由于大多数深度学习框架都提供了已经预先训练好的权重文件,可以直接加载它们来进行微调(fine-tuning),这不仅节省了大量的计算时间而且往往能带来更好的泛化能力。 - K折交叉验证(k-fold cross validation): 将整个数据集划分为k个子集轮流充当测试集合外其他部分用于训练,最终取平均误差评估模型表现。 - Early Stopping: 当连续若干轮次内验证集上的损失不再下降时提前终止迭代防止过度拟合现象发生。 #### 社区交流与资源共享 积极参与社区讨论也是提升技能不可或缺的一环。许多优秀的选手会在论坛里分享自己的思路和心得,甚至公开完整的项目代码供他人参考学习。此外GitHub平台上也有不少开源仓库整理了历届冠军队伍所使用的工具链和技术栈文档可供借鉴。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值