本文较长,建议点赞收藏以免遗失。由于文章篇幅有限,点击此处,可免费领取AI大模型高薪岗位必备技能资料,实力宠粉!
引言
在人工智能飞速发展的今天,大语言模型如雨后春笋般涌现,为各个领域带来了前所未有的变革。然而,如何让这些强大的模型精准地输出我们期望的结果,成为了一个亟待解决的问题。Prompt提示词工程应运而生,它就像一把神奇的钥匙,能够打开大语言模型潜力的宝库,让我们与人工智能的交互更加高效、智能。
人工智能发展历程中的提示词工程演变
非神经网络时代的特征工程
在非神经网络时代,人工智能主流的计算采用完全监督的机器学习方法。这种方法依赖于统计和传统的机器学习算法,如贝叶斯算法、决策树等。其最大的特点是需要对存量数据进行人工标注,例如明确区分猫和狗。通过这种方式,模型建立先验知识,以便在面对新数据时做出决策。但这种方法存在明显的局限性,标注的数量和质量决定了模型质量的上限,同时成本巨大。
基于神经网络的完全监督学习
随着技术的发展,基于神经网络的完全监督学习时代到来。这个时代的优势在于不需要手动为训练数据单独标注,只要找到合适的数据进行足够的训练,就能获得良好的训练效果。这为预训练大模型的出现奠定了基础。
预训练大模型与Prompt工程的崛起
预训练大模型是通用智能的雏形,它将大部分知识沉淀到模型中,通过无监督的预训练得到通用大模型后,再使用特定数据集进行针对性训练,使模型更适应新数据。而Prompt工程则是在大模型基础上的重要创新,它通过引入合适的模板,管控模型的输入、处理和输出结果。可以使用零样本(zero shot)、少量样本(few shot)的方式调试模型,充分利用模型的推理能力,满足各行业、各场景的个性化需求。
提示词工程的核心概念与方法
提示词(Prompt)的定义
提示词是给大语言模型(LLM)的指令,它可以是一个问题、一段文字描述,甚至是带有一堆参数的文字描述。LLM会基于提示词所提供的信息,生成对应的内容,以获得符合预期的结果。提示词就像是与大模型沟通的桥梁,引导它朝着我们期望的方向输出。
提示词工程的方法
- 提示工程(Prompt Engineering):这是一种通过设计特定的输入提示来引导模型生成期望输出的方法。它的优点是实现快速,直接针对特定需求,但可能需要多次尝试才能得到最佳答案,并且不适用于所有问题。例如,我们可以把提示工程比作领导口头布置任务,大学生根据经验和知识完成任务。
- 知识库嵌入(Knowledge Based Embeddings):结合模型与外部知识库,使模型在生成答案时可以引用这些外部知识。这种方法增加了模型处理复杂和特定问题的能力,但需要整合和维护知识库,确保其准确性和及时性。就好比提供操作手册,大学生在遇到问题时可以查阅手册。
- 微调(Fine - Tuning):通过使用大量标记数据对模型进行针对性训练,优化模型性能,使其更加专业和适应特定任务。但缺点是需要大量标记数据,并可能导致过拟合,类似于上岗前的培训,让大学生更适应具体的工作环境。
提示词工程的分类
根据提供样本的数量,提示词工程可分为Zero - shot、One - shot和Few - shot。Zero - shot仅使用当前任务的自然语言描述,不进行任何梯度更新;One - shot是当前任务的自然语言描述加上一个简单的输入输出样例;Few - shot则是加上几个简单的输入输出样例。例如,ChatGPT的发展史就是从zero - shot到few - shot的演进过程。
提示词工程的实际应用与挑战
实际应用
提示词工程在各个领域都有广泛的应用。在医疗领域,医生可以通过设计合适的提示词,让大模型辅助诊断疾病、提供治疗建议;在教育领域,教师可以利用提示词引导模型生成个性化的教学方案、解答学生的问题;在金融领域,分析师可以借助提示词让模型进行市场趋势分析、风险评估等。
面临的挑战
- 最佳答案的获取难度:提示工程可能需要多次尝试才能得到最佳答案,因为不同的提示词可能会导致模型输出不同的结果。这需要我们不断地进行实验和调整,以找到最适合的提示词。
- 适用范围的局限性:提示工程并非适用于所有问题,对于一些复杂、模糊的问题,可能无法通过简单的提示词来引导模型生成满意的答案。
- 上下文长度限制:在处理长文本的输入或输出时,可能会遇到上下文长度限制的问题,导致模型无法获取足够的信息进行准确输出。
结论
Prompt提示词工程作为人工智能领域的一项重要技术,为我们与大语言模型的交互提供了强大的工具。它不仅能够充分发挥大模型的推理能力,满足各行业、各场景的个性化需求,还为人工智能的发展开辟了新的道路。然而,我们也应该认识到提示词工程面临的挑战,不断探索和创新,以提高其应用效果。在未来,随着技术的不断进步,提示词工程有望在更多领域发挥重要作用,推动人工智能向更高的水平发展。让我们共同期待Prompt提示词工程为我们带来更多的惊喜和变革。
如果本次分享对你有所帮助,记得告诉给身边有需要的朋友。