Document-Level Relation Extraction:SSAN模型

SSAN(Structured Self-Attention Network)是为了解决文档级关系抽取中句子编码与图推理过程分离的问题。该模型通过将图结构融入Transformer编码器的Self-Attention中,提高信息传播和推理能力。实验在DocRED、CDR和GDA数据集上展示了优秀性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考链接

Introduction

  • 首先通过一个例子来简单阐述 一下Document-Level Relation Extraction:
    红色的线:表示共指关系;蓝色的线:表示句内关系,通过句内局部信息进行预测;绿色的线:表示句间关系,需要通过红色的线和蓝色的线的逻辑推理进行预测。
  • 最近的许多研究,通过图神经网络来解决文档级关系抽取问题,但是他们通常的做法是:
    • 先通过编码器编码整个文档,以此获得每个词的上下文表示。
    • 然后,在词的上下文表示上进行构图,并在图上进行信息传播和推理,以此更新图中节点的表示。
    • 最后,使用更新后的节点表示进行实体对的关系预测。
  • 论文动机:论文认为,上述过程最大的问题是句子编码过程与图推理过程是孤立分开的,使得编码器无法从图结构中获利。为此论文提出SSAN模型(Structured Self-Attention Network);直接将图结构融入到编码器中。

Method

模型整体结构图


Entity Structure

  • 目标:利用启发式规则进行构建图。
  • 图中节点;词分为实体词(entity words: E ∗ E_* E)和非实体词(non-entity words: N N N)。
  • 图中有6种
    • intra+coref:连接同一个句子中的同一个实体的不同提及之间的词;连接同一个提及中包含的词。
    • intra+relate:连接同一个句子中的不同实体提及之间的词;
    • inter+ coref:连接不同句子中的同一个实体的不同提及之间的词;
    • inter+ relate:连接不同句子中的不同实体提及之间的词;
    • intraNE:连接同一个句子中的实体词与非实体词。
    • NA:不属于上面几种关系的词,标为NA
  • 通过上述的节点和边,我们可以为每个文档构建一个邻接矩阵,上面模型图中的右边就是一个包含两个句子的文档的邻接矩阵。邻接矩阵中的元素就是这6类边,行和列对于到文档中的每个词。

SSAN Model (Structured Self-Attention Network)

  • 目标:将图结构融入到Transformer编码器的Self-Attention中间去。
  • 文档表示为一个token序列: x = { x 1 , x 2 , ⋯ , x } x=\{x_1,x_2,⋯,x\} x={ x1,x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值