AI图像风格模型Lora训练入门

Liblibai在线训练工具为您提供了多种训练底模选择,其中包括“基础模型V1.5(人像、ACG、画风)、基础模型XL、基础模型F.1”。今天我们将以如何训练PVC材质的lora为例,带着大家学习如何训练一个lora。

一 设置训练参数

首先我们先选择基础算法V1.5模型的ACG预设作为参数,ACG风格主要广泛出现在游戏、原画中表达3D或者厚涂风格的一种泛成,PVC材质的特点就是3D和接近游戏画风的质感,所以我们选择与此风格贴近的ACG预设参数较为合适。当然,也可以在页面左方你也可以简单的进行一下参数调整。

选择训练底膜:这里你也可以自由选择训练底模,你可以选择一个和自己目标风格贴近的模型作为底模,这可以帮助你提高模型的训练效果和性能表现。

单次张数:每一轮训练中每一张图片被训练多少次,可以通俗理解为你希望在每一轮图片学习中让AI学习单张图片的次数。(此处不是越高越好一般风格训练建议设置在15-20次)

循环轮次:本次任务训练的轮次,默认每一轮会保存一个模型,所以可以理解为本次训练会保存不同批次的模型结果,可以在后续的测试中选择一个效果最好的模型作为最终结果。

模型效果预览提示词:这些提示词是用于在模型训练过程中,方便对模型的效果进行快速预览。

如果你想对参数进行专业的修改,可以点击「专业参数」进行

### 关于 Flux 和 LoRA 技术的零基础入门教程 #### 了解基础知识 对于想要学习如何使用 Flux 和 LoRA 进行图像生成和模型微调的新手来说,理解这些工具的基础概念至关重要。Flux 是一种用于加速 AI 计算的工作站解决方案,而 LoRA (Low-Rank Adaptation) 则是一种高效的参数高效迁移学习方法。 #### 安装环境准备 为了能够顺利运行 Flux 和 LoRA 模型,在本地计算机上安装必要的软件包是第一步。通常情况下,推荐使用 Python 虚拟环境来管理依赖项,并通过 pip 工具安装 PyTorch 及其扩展库 torchvision 等必要组件[^1]。 ```bash conda create -n flux_lora python=3.9 conda activate flux_lora pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` #### 获取并配置预训练模型 获取已经预先训练好的 Flux 基础模型以及特定风格的 LoRA 插件非常重要。例如提到的老徐带来的这款人物 LoRA 就是一个很好的例子,它是在 Flux dev 模型基础上利用 SimpleTuner 训练得到的人像增强模块。可以通过 GitHub 或者其他开源平台下载对应的 `.safetensors` 文件。 #### 使用 Colab 平台简化流程 考虑到个人电脑可能不具备足够的 GPU 性能来进行长时间的任务处理,可以考虑借助 Google Colab 提供的强大云端计算资源。只需上传所需的数据集与模型文件至云盘空间内,再按照官方文档指引编写简单的 Jupyter Notebook 即可完成整个过程设置[^4]。 #### 微调模型适应新需求 当拥有了一定数量高质量图片作为样本之后,就可以尝试调整现有网络结构使之更好地满足个性化创作目的了。这里涉及到超参的选择如批次大小、迭代次数等;同时也需注意选择合适的损失函数指导优化方向。上述案例中的角色形象定制就是这样一个典型应用场景——让原本欧美特征明显的虚拟人设变得更加贴近东方审美标准而不失真实感[^2]。 #### 注意事项 最后值得注意的一点在于不同版本间可能存在兼容性差异,因此建议严格按照开发者给出的操作指南执行每一步骤操作。特别是有关于权重精度方面的要求,比如某些特殊变体仅支持 FP8 或 FP16 格式的输入数据格式转换等问题都需要提前做好功课加以解决[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值