- 博客(74)
- 收藏
- 关注
原创 AI交易新突破!LLM+强化学习融合系统FLAG-TRADER如何征服金融市场?
本文提出了一种名为FLAG-TRADER的新型框架,创新性地融合大语言模型(LLMs)与强化学习(RL)技术应用于金融交易场景。
2025-03-24 15:50:31
620
原创 AI炒股黑科技!用xLSTM+深度强化学习实现自动化交易㊙️
本研究验证了扩展长短期记忆网络(xLSTM)与深度强化学习(DRL)融合在自动化股票交易场景中的应用潜力。实验表明,相较于传统LSTM架构,xLSTM在性能表现上实现了显著提升,有效克服了原始LSTM的局限性。
2025-03-24 10:54:03
1174
原创 金融情绪分析升级:这个AI模型让加密预测准确率暴涨80%!
本研究验证了市场导向方法在预测比特币短期价格走势中的优势,其表现显著优于传统情感分析模型。在历史比特币事件数据集上,CryptoBERT和FinBERT的F1分数分别为25.2%和16.7%,显示出传统模型的局限性。
2025-03-20 15:56:44
807
原创 MIGA模型:组聚合混合专家如何精准预测股市?超额收益暴涨24%!
本研究提出MIGA混合专家模型,通过多专家协同机制提升股票市场预测精度。该方法验证了混合框架在量化投资中处理随机市场的可行性。在中证300、中证500及中证1000三大基准测试中,MIGA模型达到前沿性能水平,显著超越传统端到端预测方法。
2025-03-17 11:02:47
1322
原创 HedgeAgents:开启金融交易新纪元的平衡系统
HedgeAgents是一个设计用来通过实施对冲策略来提升金融操作稳定性的多智能体系统。该系统包含了一系列专门设计的对冲代理,并通过定期举行的会议促进这些代理之间的协作。实验数据表明,这一框架不仅表现突出,而且具有很高的稳健性。
2025-03-14 10:41:28
1387
原创 深度解读 | AI驱动下的新型金融对冲策略:稀疏奖励强化学习的应用
本文介绍了一种创新的时空注意力机制增强的概率金融时间序列预测Transformer模型,旨在克服传统模型在处理复杂非线性关系方面的局限。通过整合风险中性测度,为深度学习框架下的衍生品定价提供了坚实的理论基础与计算策略。
2025-03-12 14:11:12
1570
原创 FinArena:个性化投资策略的秘密武器,精准预测股市趋势
FinArena是一个开创性的人机协作框架,它利用一系列专门设计的大型语言模型(LLM)代理来执行金融数据分析和预测任务,目的是增强股票走势预测的精确度和可靠性。
2025-03-10 15:52:49
1349
原创 揭秘CryptoPulse:革命性的双重预测模型,精准捕捉加密货币短期波动
本文介绍了一种名为“CryptoPulse”的新型预测模型,旨在预估加密货币次日的收盘价格。该模型融合了三个关键因素:整体市场的波动情况、特定加密货币的价格变动以及技术分析指标的变化,并结合了市场情绪的数据。
2025-03-06 13:11:30
1182
1
原创 几何 vs 代数:大模型在数值推理中的秘密武器
本文提出了代理交易竞技场(Agent Trading Arena),这是一个基于零和游戏设计的平台,旨在模拟复杂的经济系统,并用于评估大语言模型(LLMs)在数值推理任务中的表现。
2025-03-04 13:33:59
1068
原创 实时金融信息搜索的新突破:基于大型语言模型的智能代理框架
FinSearch 是一款专为金融信息检索与分析设计的搜索代理框架,它成功应对了该领域的独特挑战。其主要创新点在于采用了基于大型语言模型(LLM)的多步骤搜索预规划方法,能够通过图结构表示将复杂的金融查询分解为更易处理的子任务。
2025-03-03 10:19:07
1184
原创 TLOB:一种用于限价订单簿数据股票价格趋势预测的具有双重注意力机制的新型Transformer模型
本文提出了两种新深度学习模型:MLPLOB(简化的MLP架构)和TLOB(基于Transformer的方法),用于基于限价单簿数据的股票价格趋势预测。两种模型在性能上优于现有的最先进方法,TLOB在处理高频市场数据方面表现尤为突出。
2025-02-28 11:20:10
915
原创 在股市交易的强化学习中寻找最佳交易历史
本文探讨了在金融深度强化学习模型中优化时间窗口的方法,并采用了二维卷积神经网络(CNN)进行实验。研究将时间字段视为一种超参数,深入分析了其对模型性能产生的影响。通过逐步增加观察窗口的长度(从两周逐步扩展至十二周),评估了不同时间窗口设置下的模型表现。
2025-02-25 16:08:19
1024
原创 学习通用多层次市场非理性因素以提升股票收益预测
本文提出了一种名为UMI(Universal Multi-layer Irrationality Factor Mining Model)的通用多层市场非理性因子挖掘模型。该模型将市场中的非理性行为区分为两个层次:股票级和市场级。
2025-02-24 13:42:55
1095
原创 FinRL-DeepSeek: 大语言模型赋能的风险敏感型强化学习交易代理
本文介绍了一种将大语言模型(LLM)融入强化学习(RL)代理的方法,应用于算法交易中,该方法整合了股票交易建议与基于新闻的风险评估分数。
2025-02-20 11:00:32
1269
原创 Fino1: 关于推理增强型大型语言模型在金融领域的可迁移性
本研究对16种大型语言模型(LLMs)在复杂金融任务中的表现进行了全面评估,这些任务涵盖了金融文本分析、表格数据解读以及基于方程的问题解决。评估的关键领域包括数值推理能力、金融术语的理解、长上下文的处理以及多表格信息的综合分析。
2025-02-19 14:12:58
1475
原创 TRADES:使用扩散模型生成现实市场模拟
本文介绍了一种名为TRADES的新模型,该模型基于Transformer架构来生成逼真的订单流时间序列数据,能够有效地捕捉高频市场数据中的时空特征。
2025-02-17 11:00:04
1380
原创 重温集成方法在ACM ICAIF FinRL竞赛2023/2024股票交易和加密货币交易任务中的应用
本文通过采用GPU实现大规模并行模拟的方式,有效提升了模型训练过程中的计算效率,并增强了模型性能的稳定性。
2025-02-14 10:11:32
1089
原创 MarketSenseAI 2.0:通过LLM代理增强股票分析
MarketSenseAI 框架通过结合大型语言模型(LLM)代理与检索增强生成(RAG)技术,成功实现了对股票的全面分析,有效应对了上下文窗口限制、数据频率差异以及定量与定性信息融合等核心挑战。
2025-02-13 09:35:04
932
原创 FinSphere:一个配备基于实时数据库的定量工具的对话式股票分析代理
本文提出了一个名为FinSphere Agent的新方案,它结合了实时金融数据库和先进的量化分析工具,旨在解决现有方法中存在的局限性,从而提升金融分析的质量和效率。
2025-02-12 10:13:38
1171
原创 ROIDICE:用于高效决策的离线投资回报率最大化
本文介绍了一种创新的策略优化系统,目标是在包含成本考量的马尔科夫决策过程(MDP)中,利用既定的数据集来提升策略的投资回报率(ROI)。
2025-02-11 10:33:55
1268
原创 DERL:基于强化学习的投资组合配置与市场信息的动态嵌入,收益率α超过0.03%(年化7.5%)
本文介绍了一种基于强化学习的动态投资组合配置框架,旨在提高样本效率和风险管理能力。利用生成自编码器将市场状态映射到更具代表性的潜在空间中,从而优化对高维及噪声金融数据的处理过程。
2025-02-07 10:15:21
1421
原创 通过多层混合MTL结构提升股票市场预测的准确性,R²最高为0.98
本文介绍了一种多层混合多任务学习(MTL)结构,旨在应对股价预测中的高波动性、复杂性和动态变化。该框架整合了增强型Transformer编码器进行特征提取,使用BiGRU来捕捉长时间的依赖关系,并通过KAN优化学习过程。
2025-02-06 09:19:45
1119
原创 基于多模态Transformer框架的中国股市预测:宏观与微观信息融合
本研究开发了一种名为多模态Transformer框架(MMF-Trans)的新系统,目标是通过结合包括宏观经济数据、微观市场信息、金融文献和事件知识在内的多种不同类型的数据,提升对中国股市预测的准确度。
2025-02-05 11:14:23
1083
原创 FinRobot:一个使用大型语言模型的金融应用开源AI代理平台
本文介绍了一种专为金融设计的LLM工具链,旨在促进AI于金融决策过程中的广泛应用。FinRobot是一个开源平台,基于LLM的AI代理,支持多种金融服务专用的AI工具。
2025-02-04 11:12:51
1831
原创 基于LLM的路由在专家混合应用:一种新颖的交易框架,该框架在夏普比率和总回报方面提升了超过25%
本文介绍的LLMoE框架,利用预训练的大型语言模型作为Mixture of Experts (MoE)架构中的路由器,通过动态整合数值型股票特征和文本新闻数据,强化了定量与定性分析的结合。这种动态路由机制突破了传统MoE系统的静态局限,提高了对市场波动的适应能力。
2025-02-03 14:16:02
1148
原创 AAPM:基于大型语言模型代理的资产定价模型,夏普比率提高9.6%
本文介绍了一种基于LLM代理的资产定价模型(AAPM),它整合了定性投资分析与定量因子策略的优点。通过解读最新的新闻报道和历史研究报告,LLM代理能够编写分析报告以预估未来的超额资产收益。
2025-01-28 09:18:39
1847
原创 基于金融新闻的大型语言模型强化学习在投资组合管理中的应用
本研究探索了如何通过将大语言模型(LLM)支持的情感分析融入强化学习(RL)中,以实现金融交易动态策略的优化。针对苹果公司股票(AAPL)和ING Corporate Leaders Trust Series B基金(LEXCX)的投资组合进行了实验验证。
2025-01-27 09:37:11
3166
1
原创 基于特征工程与转换方法的LightGBM资产预测研究
本研究关注LightGBM模型,鉴于其高效的计算性能和强大的扩展性,适合更广泛的应用场景。通过引入新的特征工程技术,并优化特征与目标变量转换方法,旨在进一步提高LightGBM在时间序列预测中的效果。
2025-01-24 10:56:00
1242
原创 用于高频交易实时中间价预测的最小批量自适应学习策略AI引擎
我们介绍了一个新的强化学习(RL)框架,该框架能够根据市场动态调整预测策略,提供更加灵活的解决方案。我们进行了多种模型的比较实验,包括ARIMA、MLP、CNN、LSTM、GRU和RBFNN,并评估了RL模型在不同输入数据集和特征重要性技术下的表现。
2025-01-23 10:51:07
1192
原创 HPPO-TO:基于迁移期权的层次强化学习的盘中风险因子挖掘方法,在中美印高频交易中实现25%的超额收益
本文提出了一种新的层次化近端策略优化(HPPO)框架,旨在自动化因子的生成与评估,该框架由高低两级策略模型构成。高级策略负责学习并赋予股票特征相应的权重,而低级策略则致力于通过一系列组合操作识别潜在的非线性关联。
2025-01-22 10:09:39
1354
原创 Hidformer:在股票价格预测中表现优异的Transformer模型——平均1日回报和2年回测验证
本研究探讨了Transformer神经网络在股票价格预测领域的应用,特别聚焦于机器学习和金融市场分析的交汇点。文中回顾了Transformer模型的演进过程,以及它如何适应金融时间序列的分析需求。
2025-01-21 09:50:47
1233
原创 利用大型语言模型在量化投资中实现自动化策略
本文介绍了一种创新的自动化策略发现框架,该框架基于大型语言模型构建,涵盖了灵活的Alpha因子挖掘、多智能体支持的多模态市场评估以及动态策略优化三个核心部分。通过融合机器学习与金融领域的尖端技术,此框架能够在多个资产类别中识别并优化Alpha策略。
2025-01-21 09:36:47
3418
原创 使用AI生成金融时间序列数据:解决股市场的数据稀缺问题并提升信噪比
本研究提出了两种新的股票数据合成方法,主要目标是提高信噪比并缓解数据稀缺的问题,特别适用于那些上市时间较短或缺乏可比公司的股票。通过这些方法,我们旨在为金融行业面临的若干难题提供有效的解决策略。
2025-01-20 10:37:09
1522
原创 基于LoRA微调的预训练大模型在离线RL量化交易中自动学习专家决策,达成47.98%累计收益
我们提出了一种新的框架:利用预训练的GPT-2权重结合低秩适应(LoRA)技术对DT进行微调,以增强模型的泛化能力。我们的实验采用了专家RL代理的历史轨迹,在离线RL设置下训练模型,并根据金融指标评估其表现。
2025-01-20 10:30:44
1356
原创 MacroHFT:基于记忆增强的上下文感知强化学习在高频交易中的应用
本文提出了一种名为MacroHFT的新策略,专门针对分钟级别的加密货币交易,并通过整合宏观市场信息来指导决策过程。
2025-01-17 10:21:33
1119
原创 基于变分模态分解、PatchTST和自适应尺度加权层的股票价格预测增强
本文提出的创新性VMD+PatchTST结合自适应尺度加权层(ASWL)框架,利用VMD实现数据分解,借助PatchTST识别时间模式,并通过ASWL优化资源分配,从而大幅提升了股票价格预测的准确性。
2025-01-17 10:08:01
1402
原创 AAPM:基于大型语言模型代理的资产定价模型,夏普比率提高9.6%
本文介绍了一种基于LLM代理的资产定价模型(AAPM),它整合了定性投资分析与定量因子策略的优点。通过解读最新的新闻报道和历史研究报告,LLM代理能够编写分析报告以预估未来的超额资产收益。
2025-01-16 10:39:18
1114
原创 基于金融新闻的大型语言模型强化学习在投资组合管理中的应用
本研究探索了如何通过将大语言模型(LLM)支持的情感分析融入强化学习(RL)中,以实现金融交易动态策略的优化。针对苹果公司股票(AAPL)和ING Corporate Leaders Trust Series B基金(LEXCX)的投资组合进行了实验验证。
2025-01-16 10:11:57
1404
2
原创 利用AI技术优化投资组合方案,减少因极端情况引发的投资风险
本文介绍了一种减少此类极端风险的投资组合策略。通过极值理论评估股票间的极端依赖性,并构建了一个体现这些关系的网络模型。采用阈值方法创建这一复杂网络并研究其结构特征。
2025-01-15 09:43:18
1463
原创 GARCH指导的神经网络在金融市场波动性预测中的应用
本文介绍了一种名为GARCH-Informed Neural Network (GINN)的新型混合模型,它融合了机器学习与GARCH模型的优势,以捕捉市场模式。该模型通过将GARCH作为正则化组件嵌入到人工神经网络的损失函数中,以此减少过拟合风险。
2025-01-15 09:35:22
1398
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人