使用AI生成金融时间序列数据:解决股市场的数据稀缺问题并提升信噪比

“GENERATIVE MODELS FOR FINANCIAL TIME SERIES DATA: ENHANCING SIGNAL-TO-NOISE RATIO AND ADDRESSING DATA SCARCITY IN A-SHARE MARKET”

论文地址:https://arxiv.org/pdf/2501.00063

摘要

金融领域面临的数据稀缺与低信噪比问题,限制了深度学习在股市分析中的有效性。为此,本文介绍两种利用生成模型合成中国A股市场数据的新方法:

  • 行业基础合成策略,它通过识别不同行业板块股票的独特属性,采用近似非局部总变差技术平滑化数据,并运用傅里叶变换带通滤波减少噪声干扰,同时结合去噪扩散隐式模型加快采样速度;
  • 基于模式识别的递归合成方案,专门针对那些上市时间较短或缺乏可比公司的股票,借助模式识别技术和马尔科夫模型创建变化长度的股票序列,并应用子时间级别数据增强技术来应对数据不足的问题。

经过对多个市场(包括主板、科创板、创业板、北京证券交易所、NASDAQ、NYSE及AMEX)的数据进行测试,结果表明这些合成数据不仅提升了预测模型的表现和个股信号的清晰度,而且在解决数据稀缺方面效果尤为突出,尤其是在处理上市历史短暂或缺乏类似对比公司的股票时。

本研究为金融数据合成提供了新颖的方法论支持,有助于金融市场分析以及高频交易策略的发展,同时也加深了对中国A股市场动态特征的理解。

简介

金融市场在价格和收益预测上遭遇了数据质量与数量的双重挑战,尤其在股票市场中表现为低信噪比和数据同质性问题。此外,数据隐私法规进一步限制了金融行业的数据获取与共享,造成了信息不对称和数据孤岛的现象。面对这些挑战,人工智能和深度学习模型提供了一种创新的解决方案,通过生成合成金融数据来增加数据多样性、保护用户隐私,并提升预测准确性。值得注意的是,金融数据的独特特征,如尖峰厚尾分布、异方差性和波动聚集等,对于深入理解市场动态至关重要。

本研究提出了两种新的股票数据合成方法,主要目标是提高信噪比并缓解数据稀缺的问题,特别适用于那些上市时间较短或缺乏可比公司的股票。通过这些方法,我们旨在为金融行业面临的若干难题提供有效的解决策略。

01背景和相关工作

金融市场动态与数据稀缺

准确预测金融市场中的资产价格和回报至关重要,但由于市场的波动性和不可预测性,使得精准预测充满挑战。财务数据的稀缺性和低质量限制了深度学习在金融领域的应用,特别是在股票市场中,低信噪比和高数据同质性对模型构建造成了障碍。同时,财务数据的高度敏感性和价值意味着数据泄露或恶意操纵可能会带来严重的安全风险。

随着数据隐私法规的实施,金融行业在数据获取与共享方面遇到了难题,导致了信息不对称和“数据孤岛”的现象。为了应对这些问题,研究人员正在探索利用人工智能技术生成合成财务数据的方法,这种方法不仅能够保留原始数据的关键特征,还能增加数据多样性、保护用户隐私,并提高模型训练和预测的准确性。这样做的目的是为了解决当前面临的挑战,推动金融行业的进步。

金融中的生成模型

生成模型,例如变分自编码器(VAE)、生成对抗网络(GAN)和扩散模型,在合成金融数据方面显示出了卓越的能力,可以有效模拟真实的市场动态和客户交易习惯。VAE利用概率性的编码与解码技术,创造出与训练数据集特征相似的新数据实例。GAN则通过生成器和判别器之间的对抗机制革新了图像生成领域,提供了前所未有的创造能力。扩散模型通过逐步逆转添加噪声的过程来生成高质量的数据样本,实现了在保持数据结构的同时增加样本多样性的目标。这些方法共同为金融市场提供了一种强大的工具,用于创建既真实又多样的合成数据。

金融数据生成中的挑战

生成模型在金融数据生成领域的应用尚处于起步阶段,面对市场复杂性和动态变化的挑战。为了生成高质量的合成数据,需要更深入地理解市场动态,并将深度生成模型与金融数据的特点紧密结合。目前,大多数模型主要依赖于西方市场数据(例如美国股市)进行训练,未能充分考虑到中国A股市场的独特规则和特性。由于各市场的分布特性及监管要求存在差异,这种局限性可能导致生成的合成数据不完全符合特定市场的规律和模式。因此,针对不同市场定制生成模型是必要的。

金融数据综合方法

各金融机构和学者已经提出了生成合成金融数据的框架,旨在保护实体信息不被泄露的同时,支持金融分析与研究工作。学术界对多种生成对抗网络(GAN)变体进行了探索,通过改进架构和损失函数来提升金融数据合成的效果。当前,生成模型在金融领域的研究依旧十分活跃,显示出开发更为复杂和精细的合成数据生成方法的巨大潜力,这将进一步增强金融模型和策略的预测能力。这些努力致力于在保障隐私的前提下,提高数据分析的准确性和可靠性。

02基于分数的生成模型

金融市场动态与数据稀缺

Score-based Generative Models (SGMs) 是一种自监督学习技术,它通过学习数据未知分布的得分函数来创建新样本。该方法的核心在于最小化目标函数 L(θ),其中使用神经网络 sθ 来逼近得分 ∇x log p(x)。然而,直接计算目标函数中的 tr(∇x sθ(x)) 需耗费大量计算资源,为此引入了去噪得分匹配(DSM)这一解决方案。

DSM 方法通过对原始数据添加噪声,以此估计含噪声数据分布的得分,并将训练目标调整为最小化一个更新后的目标函数。在特定情境下,DSM 的训练目标与去噪自编码器(DAE)的目标是等价的。

此外,这些模型可以通过随机微分方程(SDEs)整合进一个统一框架

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值