AAPM:基于大型语言模型代理的资产定价模型,夏普比率提高9.6%

“AAPM: Large Language Model Agent-based Asset Pricing Models”

论文地址:https://arxiv.org/pdf/2409.17266v1

Github地址:https://github.com/chengjunyan1/AAPM

摘要

这篇文章介绍了一种利用LLM代理的资产定价模型(AAPM),该模型融合了定性的投资分析与定量的金融经济参数,以预测超出常规的资产收益。实验结果表明,相较于传统的机器学习基准,这种方法在优化投资组合和减少资产定价误差方面表现更优,具体表现为夏普比率和异常投资组合的平均绝对阿尔法值(|α|)分别提升了9.6%和10.8%。

简介

金融资产定价对资本的有效配置至关重要,传统方法通常基于宏观经济状况和公司特定因素来预测超额收益,但这些方法受到有效市场假说的质疑。在投资决策中,语言数据扮演着关键角色,因为它承载了社会和市场的信息流动,同时,主观的投资管理依旧占有重要地位。定性分析能够提供那些经济指标和市场数据未能揭示的定价见解,然而,现有的自然语言处理技术未能完全掌握此类洞察。将语言信息与定量模型相结合的挑战在于需要具备金融推理能力和追踪长期事件的记忆能力,不恰当的模型设计可能会引入噪音。

本文介绍了一种基于LLM代理的资产定价模型(AAPM),它整合了定性投资分析与定量因子策略的优点。通过解读最新的新闻报道和历史研究报告,LLM代理能够编写分析报告以预估未来的超额资产收益。实验结果表明,AAPM实现了夏普比率9.6%的增长以及资产定价误差平均|α| 10.8%的改善。该研究的主要贡献在于:开发了LLM代理架构、提出了一种混合资产定价框架,并进行了详尽的实验评估。

01相关工作

证券资产定价

资产定价的核心在于确定金融资产的公正价值。1964年,Sharpe提出的资本资产定价模型(CAPM)将资产预期回报视为市场回报的一个线性函数。随后,Merton在1973年的研究中引入了财富作为状态变量,Lucas Jr于1978年考虑了消费风险对定价的影响。CAPM从单因子模型发展为多因子框架,Fama和French在1992年提出了三因子模型,并于2015年扩展至五因子模型。此外,Carhart在1997年增加了动量因子,而Ross于1976年提出不考虑套利机会的套利定价理论(APT)。随机贴现因子(SDF)通过随机定价核计算未来现金流的现值,这一方法由Cochrane在2009年详细阐述。这些理论和模型的发展共同推动了资产定价领域的进步。

金融机器学习

机器学习技术被用于探索“因子动物园”中的非线性相互作用(Feng等人,2020)。Kelly等人(2020)提出了工具主成分分析(IPCA)以估计潜在因子及其负载。Gu等人(2020)则采用深度神经网络来模拟这些复杂的相互作用。进一步地&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值