通过多层混合MTL结构提升股票市场预测的准确性,R²最高为0.98

“Boosting the Accuracy of Stock Market Prediction via Multi-Layer Hybrid MTL Structure”

论文地址:https://arxiv.org/pdf/2501.09760

​​​​​​​

摘要

本研究引入了一种创新的多层次混合多任务学习架构,致力于提升股市预测的效能。此架构融合了Transformer编码器、双向门控循环单元(BiGRU)以及Kolmogorov-Arnold网络(KAN)。据实验结果表明,相较于其他模型,该架构在预测准确度方面表现更佳,其平均绝对误差(MAE)可低至1.078,平均绝对百分比误差(MAPE)最小达到0.012,决定系数(R²)最高为0.98。

简介

股票市场预测对投资者和企业来说极为关键,但因数据的复杂性,传统统计模型如ARMA、ARIMA和GARCH等在效果上存在局限。相比之下,机器学习技术在股票预测方面表现更优,特别是深度学习方法(例如卷积神经网络和递归神经网络)展示了更强大的学习能力。传统方法通常忽略了不同股票间的相互关系,而引入空间维度可以改进预测精度,图神经网络(GNN)在这方面已被采用。Transformer模型通过注意力机制能有效捕捉复杂的关联性,但在处理长序列和高维数据时面临挑战。KAN(知识增强网络)利用边函数参数替代传统的权重设置,提高了对非线性函数的逼近能力。集成学习策略在金融预测领域中表现出明显优势,本研究提出的算法可作为集成学习框架的一部分。该研究介绍了一种结合了Transformer编码器、双向门控循环单元(BiGRU)与KAN的多层混合多任务学习框架,旨在提升股票市场预测的效率及准确性。

01相关工作

股票市场趋势预测对于学术研究和实际操作都极为重要。预测手段涵盖了从传统统计方法到先进的机器学习模型。过去,传统方法在该领域占据主导地位,然而,随着神经网络和深度学习等机器学习算法的兴起,这一状况正在发生变化。通过结合传统技术与现代方法,混合模型能够提供更高的预测精度和稳定性。

传统方法

传统股票市场预测方法涉及时间序列模型和隐马尔可夫模型(HMM)。Devi等人率先应用ARIMA模型来预测市场趋势,Khanderwal指出ARIMA更适合短期预测。Marisetty等人则采用GARCH模型研究了五大金融指数的波动性,表明GARCH是进行波动性预测的理想选择。Gupta等人提出了基于HMM的最大后验估计器,用于预测次日股票价格,并发现其性能优于ARIMA和ANN模型。Su等人将HMM从传统的离散形式扩展到连续形式,以更好地适应股票价格趋势的预测。

然而,由于传统统计方法本质上具有线性特征,它们在股价剧烈波动的情况下表现不佳。为解决这一问题,Mattera等人引入了动态网络自回归条件异方差(ARCH)模型,以提高处理高维输入数据时的股票预测准确性。

机器学习方法

机器学习,特别是神经网络模型,在股票价格预测方面展现了最高的准确性。例如,Vijh等人利用人工神经网络和随机森林来预测五家公司的次日收盘价。在处理复杂的非线性数据时,深度学习方法显示出比传统技术更优的性能。尤其是在股票指数预测中,LSTM单输入模型的表现超过了传统的机器学习模型。此外,采用多变量的深度学习方法能够更精准地预测股市波动。Tang等人开发的基于小波变换的LSTM模型,通过使用多维数据输入,实现了72.19%的准确率。Deep等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值