python+opencv 直方图反向投影

本文介绍了一种图像处理技术——直方图反向投影,通过将RGB色彩空间转换为HSV色彩空间,并计算和应用2D直方图,实现对目标图像的精确定位和分析。文中详细展示了使用OpenCV库进行直方图反向投影的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直方图反向投影

1、先把RGB色彩空间转换为HSV色彩空间

2、计算样本的2D直方图

3、对样本直方图作归一化

4、对目标图像作反向投影

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt


def back_project_demo():
    sample = cv.imread('C:/Users/Y/Pictures/Saved Pictures/lena.png')
    target = cv.imread('C:/Users/Y/Pictures/Saved Pictures/lenanoise.png')
    roi_hsv = cv.cvtColor(sample, cv.COLOR_BGR2HSV)
    target_hsv = cv.cvtColor(target, cv.COLOR_BGR2HSV)


    # show iamges
    cv.imshow('sample', sample)
    cv.imshow('target', target)
    # 计算样本的2D直方图,[0, 1]表示2个通道,[180,256]分别表示两个通道的范围,[0,180,0,256]是固定的值,不用改
    # 是HSV两个通道的取值范围
    # [180,256]这两个值的数值越大,对像素的划分越精细,图像看起来越不准确,可适当将数值改小
    roiHist = cv.calcHist([roi_hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])
    # 根据MINMAX作归一化
    cv.normalize(roiHist, roiHist, 0, 255, cv.NORM_MINMAX)
    # 反向投影
    dst = cv.calcBackProject([target_hsv], [0, 1], roiHist, [0, 180, 0, 256], 1)
    cv.imshow('backProjectionDemo', dst)

# 建立2D直方图
def hist2d_demo(image):
    hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)
    # mask是None,两个通道的histSize分别是180和256,H范围是0-180,S范围是0-256,
    hist = cv.calcHist([image], [0, 1], None, [32, 32], [0, 180, 0, 256])
    # cv.imshow('hist2d', hist)
    plt.imshow(hist, interpolation='nearest')
    plt.title('2D Histogram')
    plt.show()


src = cv.imread('C:/Users/Y/Pictures/Saved Pictures/demo.png')
cv.namedWindow('input image', cv.WINDOW_AUTOSIZE)
cv.imshow('input image', src)
hist2d_demo(src)
back_project_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()

 

原图像                                                                                                          原图相对应的2D直方图

sample图像                                                          target图像                                           对target图像做反向投影

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值