回溯法在排列组合问题中的应用

回溯法是一种有效的搜索策略,用于解决排列组合问题。通过选取最优路径并适时回溯来寻找解决方案。以n=5, r=3为例,展示了所有可能的组合,并解释了如何确定回溯条件。在编程实现中,通过判断当前选择是否满足回溯条件来决定是否继续探索或返回上一步。" 89385319,8501903,PyTorch可视化实践指南,"['PyTorch框架', '深度学习', '模型可视化', '数据科学', '开发工具']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术称为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

 

例题:排列组合问题,找出n个自然数(1,2,3,4,。。。n)中取r个数的组合。

分析:当n=5,r=3,所有组合为:

5    4    3

5    4    2

5    4    1

5    3    2

5    3    1

5    2    1

4    3    2

4    3    1

4    2    1

3    2    1


将自然数排列在数组A中,排列时从A[1]>A[2]>A[3],后一个至少比前一个数小1,并且满足ri+A[ri]>r。例如,当n=5,r=3时,ri取1,则A[ri]必须大于2,即第一位只能是5、4、3中的一个。若ri+A[ri]<=r就要回溯,该关系就是回溯条件。为直观起见,当输出一组组合数后,若最后一位为1,也应作为一次回溯

程序例子:

#include<stdio.h>
#define N 5
#define R 3
void main()
{
	int a[R+1],ri,j;
	ri=1;a[1]=N;
	do{
		if(ri!=R)                   //判断是否搜索到底
			if(ri+a[ri]>R){         //判断是否回溯
				a[ri+1]=a[ri]-1;
				ri=ri+1;
			}	
			else{
				ri=ri-1;            //回溯
				a[ri]=a[ri]-1;
			}
		else{
			for(j=1;j<=R;j++)
				printf("%3d",a[j]);
			printf("\n");
			if(a[R]==1){            //判断是否回溯
				ri=ri-1;            //回溯
				a[ri]=a[ri]-1;
			}
			else
				a[ri]=a[ri]-1;      //递推到下一个数
		}
	}while(a[1]!=R-1);
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值