文章目录
论文地址:https://arxiv.org/pdf/2008.12283.pdf
摘要
1.引入实体引导序列作为eg:BERT的输入。
2.使用内部注意力概率作为evidence预测的附加特征来指导预训练语言模型的微调。
实体entity, evidence 支撑实体的句子。
一、介绍
面临问题:预训练语言模型在所有标记上给出的注意力值对于RE较为统一,限制了模型从文档到相关令牌提取信息的能力,限制了预训练LM 的有效性。
解决方法:对于文档中的每个实体,将实体附加到文档的开头来生成一个新的输入序列。(Ne个实体,就有Ne个新序列 for training)来对LM进行微调。
二、方法
1.如何生成实体引导的输入
H表示(连接头实体)D文档标记 [CLS]表征向量C用于后续的分类任务;[SEP]分开两个输入句子。
形成输入序列embedding:“[CLS]”“+H+”[SEP]”“+D+”[SEP]”
2.实体引导的RE
average后得到实体的embedding h
k-th tail entity embeddin