【论文学习E2GRE】Entity and Evidence Guided Relation Extraction for DocRED2020

该论文提出了一种改进的预训练语言模型微调方法,通过引入实体引导的输入序列来增强模型从文档中提取关键信息的能力。在关系抽取任务中,模型利用内部注意力概率作为特征进行证据预测,并结合证据预测进行联合训练,从而提高关系抽取的性能。实验结果显示,实体和证据预测的结合能显著提升系统性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E2GRE框架
论文地址:https://arxiv.org/pdf/2008.12283.pdf


摘要

1.引入实体引导序列作为eg:BERT的输入。
2.使用内部注意力概率作为evidence预测的附加特征来指导预训练语言模型的微调。


实体entity, evidence 支撑实体的句子。

一、介绍

面临问题:预训练语言模型在所有标记上给出的注意力值对于RE较为统一,限制了模型从文档到相关令牌提取信息的能力,限制了预训练LM 的有效性。
解决方法:对于文档中的每个实体,将实体附加到文档的开头来生成一个新的输入序列。(Ne个实体,就有Ne个新序列 for training)来对LM进行微调。

二、方法

1.如何生成实体引导的输入

H表示(连接头实体)D文档标记 [CLS]表征向量C用于后续的分类任务;[SEP]分开两个输入句子。
形成输入序列embedding:“[CLS]”“+H+”[SEP]”“+D+”[SEP]”

2.实体引导的RE

average后得到实体的embedding h
k-th tail entity embeddin

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值