• 博客(32)
  • 收藏
  • 关注

原创 算力经济模型推演:从中心化到去中心化算力市场的转变(区块链+智能合约的算力交易原型设计)

传统算力市场以超算中心、云计算平台为核心载体,其运营模式呈现强中心化特征。中国移动构建的"四算融合"网络虽实现百万级服务器的智能调度,但动态资源分配仍受制于集中式控制架构。

2025-05-05 18:38:27 509

原创 GPU集群监控系统开发实录:基于Prometheus+Grafana的算力利用率可视化方案

资源闲置率下降42%故障平均修复时间(MTTR)缩短至15分钟支撑3篇顶会论文的实验数据分析未来可结合eBPF技术实现更细粒度的内核级监控,并探索LLM驱动的异常根因分析。欢迎学术同行在遵循Apache 2.0和的前提下,参考本文的开源实现(项目地址:https://github.com/xxx/gpu-monitoring)。版权声明:本文中涉及的第三方工具配置示例均来自各项目官方文档,相关商标权利归属各自所有者。

2025-05-03 10:06:08 649

原创 MLPerf基准测试工具链定制开发指南:构建领域特异性评估指标的实践方法

当MLPerf工具链插上定制化的翅膀,性能评估不再是刻板的数字游戏。通过在OpenCatalyst项目中实现‌原子结合能预测误差‌与‌稳定性系数‌的双指标评估体系,我们见证了领域知识注入如何使基准测试焕发新生。这启示我们:优秀的评估系统应该像DNA一样——既保持核心结构的稳定,又具备适应环境变化的突变能力。本文开发示例基于MLPerf v3.1修改版,完整代码已开源。引用出处[‌1]: MLPerf官方文档 v3.1。

2025-05-02 22:41:31 1122

原创 PyTorch 2.0编译模式深度评测:图优化对GPU利用率的影响

PyTorch 2.0通过TorchDynamo与XLA的互补优势,正在重塑深度学习训练的能效曲线。当ResNet-50的GPU利用率突破90%大关,我们看到的不仅是技术指标的跃升,更是编译器技术对计算本质的深刻理解——‌在动态与静态的平衡中寻找最优解‌。本文实验数据基于PyTorch 2.3 nightly版本。

2025-05-02 09:31:23 1056

原创 存算一体架构下的新型AI加速范式:从Samsung HBM-PIM看近内存计算趋势

存算一体不是简单的技术改良,而是对计算本质的重新思考。当HBM-PIM将能效边界推向10 TFLOPS/W,我们正站在架构革命的临界点。这场变革的终极目标,是让计算回归数据本源——‌在比特诞生的地方处理比特‌。本文实验数据基于Samsung Aquabolt-XL HBM-PIM实测,更多技术细节请参考ISSCC 2023论文《A 1ynm 16Gb 4.8TFLOPS/W HBM-PIM with Bank-Level Programmable AI Engines》。

2025-05-01 21:42:17 1713

原创 量子机器学习中的GPU加速实践:基于CUDA Quantum的混合编程模型探索

通过CUDA Quantum实现GPU加速的量子机器学习,我们正在突破传统计算的物理边界。本文展示的技术路径表明,结合NVIDIA GPU的并行计算能力与量子计算的叠加优势,可显著提升混合算法的实用价值。随着硬件架构的持续演进,量子机器学习有望在药物发现、材料模拟等领域实现突破性应用。

2025-04-30 13:31:53 1122 1

原创 你的模型还在卡迭代?AladdinEdu已空投H卡!

炼丹师”,欢迎来到你的道场!这里是——这是我们第一次上线公测,因此在您订阅我们GPU服务之前,我有一些信息与您分享~

2025-04-30 09:39:03 1957

原创 光子计算芯片进展评估:下一代AI算力突破的可能性

当NVIDIA在GTC 2025宣布集成光子协处理器时,标志着两大技术路线从对立走向融合。这种"光电异构"架构可能催生新计算范式:电子芯片处理分支逻辑和状态控制,光子芯片承担矩阵运算等稠密计算。清华大学"太极"芯片在AGI任务中展现的千倍能效优势,预示着光子计算有望在2030年前突破"替代电子芯片"的临界点。这场算力革命不仅关乎技术路径选择,更是整个AI基础设施的重构竞赛。该结构在ImageNet分类任务中实现89.2%准确率,功耗降低至H100的1/15。光子计算芯片的核心创新点体现在:‌。

2025-04-26 16:17:50 749

原创 HPC与AI工作负载的GPU利用率对比诊断(使用Nsight Compute进行指令级性能剖析)

当HPC应用在V100上达到98%的理论利用率却仍比A100慢3倍时,我们意识到单纯的利用率指标已不足以衡量现代GPU的真实效能。通过Nsight Compute的指令级洞察,开发者可以穿透表象,直指性能优化的核心矛盾——在计算密度与内存带宽之间找到属于特定工作负载的黄金平衡点。

2025-04-25 14:18:04 1247

原创 GPU热设计功耗(TDP)与计算效率的平衡艺术:动态频率调节对算法收敛速度的影响量化分析

当单颗GPU的功耗开始逼近小型空调的功率,我们需要重新思考计算效率的本质。实验证明,通过智能化的动态频率管理,可以在不牺牲模型精度的前提下,将训练过程的碳排放降低20%以上。这种硬件与算法的协同优化,正在重新定义高效计算的范式。

2025-04-24 14:51:17 987

原创 AI编译器技术深探:TVM与Triton的算子优化哲学对比

通过构建多层可扩展IR系统(如Affine Dialect、GPU Dialect),MLIR实现了从算法描述到硬件指令的全流程统一表达。现代AI编译器的核心目标是通过计算与调度分离(Separation of Computation and Scheduling)实现算子的极致性能优化。TVM继承了Halide的衣钵,构建了分层编译架构。其Relay中间表示层专注于计算图的全局优化(如算子融合、常量折叠),而TVM层通过调度模板(Schedule Template)实现算子级优化。

2025-04-22 11:21:47 1388

原创 边缘计算场景下的GPU虚拟化实践(基于vGPU的QoS保障与算力隔离方案)

边缘GPU虚拟化正在经历从"能用"到"好用"的技术跃迁。异构计算统一抽象层‌(兼容CUDA/MLU/昇腾等架构)‌联邦学习驱动的动态调度‌(基于全局负载预测)‌存算一体的虚拟化方案‌(显存与计算资源联合优化)

2025-04-21 15:35:56 929

原创 国产GPU生态现状评估:从寒武纪到壁仞的编程适配挑战

国产GPU生态建设正处于“硬件追赶→软件攻坚→生态突破”的关键阶段。短期来看,通过中间件兼容层和框架适配可缓解迁移阵痛;长期则需构建自主技术标准体系,在指令集设计、工具链开发、社区运营等维度实现系统性突破。优先选择TensorFlow等成熟框架‌针对国产架构特点优化数据局部性‌积极参与开源社区共建生态‌唯有实现“性能可用性→开发便捷性→生态丰富性”的递进突破,国产GPU才能真正走出CUDA的生态阴影。

2025-04-19 23:53:03 927

原创 算力网络构建实践:Kubernetes+Slurm混合调度方案设计(多集群GPU资源动态分配算法实现)

的特征,涵盖大规模分布式训练、实时推理服务、科学计算等差异化负载类型。Kubernetes与Slurm的协同工作模式突破单系统局限:‌。结合Prometheus监控数据实现分钟级响应‌。(注:测试数据集包含1.2万个混合类型任务)通过滑动窗口算法动态调整预留比例‌。当前AI训练场景呈现‌。

2025-04-17 14:57:52 813

原创 AladdinEdu使用手册

AladdinEdu的使用主要分为三步,workshop建立 > 环境配置 > GPU调用,以下内容将围绕此流程展开。

2025-04-16 18:38:28 2013

原创 混合精度训练失效场景诊断手册(从数值稳定性角度分析FP16/FP8的适用边界)

混合精度训练通过将FP32、FP16、FP8等不同位宽的浮点类型组合使用,在保证模型收敛性的前提下提升计算效率。(数据说明:FP8在x>5时无法表征Sigmoid函数的变化)(注:该策略在LLaMA-7B训练中实现收敛速度提升35%‌)(数据说明:动态调整方案在速度与精度间取得最佳平衡)在参数更新阶段强制转换为高精度执行累加‌。

2025-04-16 16:19:27 678

原创 分布式训练通信优化:如何突破AllReduce的带宽瓶颈

在BLOOM-176B训练中,ZeRO-3使单卡显存需求从2.4TB降至30GB,通信频率减少60%‌。该方案可将通信量减少94%,但需要额外10%计算资源维护残差(ImageNet训练提速2.1倍)‌。该方案在V100集群上实现83%通信重叠率,有效隐藏45%延迟‌。

2025-04-16 13:58:16 389

原创 AladdinEdu(H卡GPU算力平台)使用教程: 1)注册与开通流程 2)插件使用流程

AladdinEdu使用教程:1)注册与开通流程 2)插件使用流程

2025-04-15 15:04:32 1565

原创 大模型训练显存压缩技术全景图 ‌ ——从LoRA到QLoRA:参数高效微调的技术路线演进

大模型训练面临的核心矛盾是:模型参数量指数级增长与GPU显存容量线性提升之间的鸿沟。本文系统解析参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)技术路线,揭示从LoRA到QLoRA的显存压缩逻辑演进,为实验室资源受限环境下的模型训练提供解决方案。

2025-04-14 14:27:05 809

原创 GPU显存优化实战:Beyond PyTorch的定制化内存分配器开发

在训练十亿参数级大模型时,显存容量往往成为制约模型规模的瓶颈。本文突破框架默认内存管理机制,从CUDA底层原理出发,解析如何开发定制化内存分配器,并通过Zero-Copy与Unified Memory的混合策略实现显存利用率提升3倍,为高校实验室的显存优化提供系统级解决方案。

2025-04-14 14:04:09 1001

原创 CUDA编程高阶技巧:如何通过Warp-Level优化提升计算密度

在CUDA编程中,Warp(线程束)是GPU执行的最小调度单元。本文通过矩阵乘法(GEMM)案例,深入剖析如何通过Warp-Level优化提升计算密度,并系统性解决共享内存Bank Conflict问题,实现算法性能的指数级提升。

2025-04-13 21:13:10 900

原创 Ampere vs Hopper架构对比:新一代GPU的计算单元设计演进分析

在AI算力需求爆发式增长的驱动下,NVIDIA GPU架构从Ampere到Hopper的演进呈现出鲜明的技术代际特征。本文聚焦计算单元设计,解析两代架构在Tensor Core优化、内存子系统重构及专用加速引擎等维度的创新逻辑,揭示硬件设计如何匹配Transformer大模型训练需求。

2025-04-13 18:55:40 558

原创 Diffusion模型背后的数学原理:从SDE到ODE的GPU加速推导

Stable Diffusion在潜空间生成512×512图像仅需20步,其核心在于将随机微分方程(SDE)转换为常微分方程(ODE)。该转换使得采样过程从随机游走变为确定性轨迹,计算量减少57%(25步采样即可达到SDE 1000步效果)。该实现通过融合时间步计算与模型推理,在A100上单步耗时从12ms降至3.2ms。:通过自适应时间离散,在10步内达到传统方法50步的精度,推理速度提升4.8倍。

2025-04-12 17:18:26 340

原创 MoE(混合专家)模型实战:用GPU集群训练万亿参数大模型

Google在2023年公布的Switch-Transformer模型达到1.6万亿参数,其核心创新在于MoE(Mixture-of-Experts)架构。与传统Transformer相比,MoE模型的计算效率提升4.8倍,但需要解决动态路由与负载均衡两大核心难题。本文将结合PyTorch代码,深度解析GPU集群下的关键技术实现。

2025-04-12 14:13:28 352

原创 AI编译器前沿:MLIR/XLA如何突破GPU算力瓶颈

2023年Meta训练Llama 2模型时,通过MLIR编译器将GPU利用率从45%提升至78%,节省了250万美元算力成本‌。面对AI模型规模指数级增长,‌**编译器优化已成为突破算力瓶颈的核心手段‌**。本文以MLIR/XLA两大主流框架为例,解析编译器如何通过算子融合、内存分配策略重构计算范式,释放GPU硬件潜力。

2025-04-11 13:03:24 724

原创 大模型分布式训练秘籍:Megatron-LM vs DeepSpeed技术对比

2022年微软与英伟达联合训练5300亿参数的MT-NLG模型,首次验证了3D并行策略的可行性‌。面对万亿参数大模型训练需求,‌**Megatron-LM‌**与‌**DeepSpeed‌**两大框架分别代表了硬件协同优化与显存效率突破的技术路线。本文从工程实现视角,剖析两者在数据并行、流水线并行、张量并行中的核心差异,揭示超大规模模型训练的优化逻辑。

2025-04-11 11:26:04 934

原创 混合精度训练实战:FP16/FP8如何提升3倍AI模型训练速度

2018年NVIDIA在Volta架构中首次引入Tensor Core,将FP16混合精度训练速度提升6倍,掀起了深度学习领域的“精度革命”。混合精度训练通过‌**动态分配计算精度‌**,在保持模型收敛性的前提下,实现‌**3倍训练加速‌和‌50%显存节省‌**。本文以PyTorch框架为例,解析FP16/FP8的实现原理,并演示如何通过自动混合精度(AMP)技术优化训练流程。

2025-04-11 10:25:02 723 1

原创 AladdinEdu把H卡价格打下来了

算力普惠时代已经来临!H卡已是同学们都能用得起的GPU。

2025-04-10 23:30:26 1829

原创 GPU架构演进史:从CUDA到Tensor Core的算力革命

2012年AlexNet在双卡GeForce GTX 580上的成功训练,首次验证了GPU在深度学习领域的潜力‌。此后,NVIDIA通过CUDA生态与架构迭代,将GPU从图形处理器进化为通用计算核心,而AMD则通过CDNA架构在异构计算领域持续追赶。本文聚焦‌**架构升级对AI训练效率的影响‌**,解析NVIDIA Volta/Ampere/Hopper三代架构差异,并探讨技术演进背后的产业逻辑。

2025-04-10 19:33:14 739

原创 复现顶会论文时,为什么你的GPU总比作者多用20%时间?

在科研实践中,复现顶会论文的代码时,许多同学会发现一个令人困惑的现象:‌**即使使用相同的代码和超参数,GPU训练时间却比论文中声称的多了20%甚至更多‌**。这种差异往往被归因于"随机性"或"实现细节",但背后可能隐藏着更复杂的硬件与软件协同机制。本文将深入剖析这一现象的原因,并提供系统的应对策略,帮助你在实验复现中实现"时间对齐"。

2025-04-09 14:17:33 827

原创 2024全球GPU算力租赁市场报告:高校科研团队的资源困境与破局

高校科研正站在算力革命的前沿——无论是MIT的算法突破,还是算力租赁的普惠化,都在重塑科研资源分配的逻辑。作为**专注高校服务的算力平台**,我们致力于通过**弹性供给、技术赋能、成本优化**,让每一份学术探索都能获得充足的算力支撑。

2025-04-09 11:26:58 884

原创 H800 vs A100:大模型训练场景下的算力与显存深度评测

在千亿参数大模型训练中,GPU的显存带宽、多卡互联效率与算力密度直接决定了训练成本与效率。作为国内领先的GPU算力租赁平台,我们针对高校科研场景,深度评测英伟达H800与A100的性能差异,为研究者提供选型参考。

2025-04-08 19:20:55 1306

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除