Pandas-如何轻松处理时间序列数据
时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。此处选择巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。
监测的时间序列数据
比如,air quality no2 数据表中,主要是巴黎,伦敦等城市的每小时环境监测数据:
In [2]: air_quality.head()
Out[2]:
city country datetime location parameter value unit
0 Paris FR 2019-06-21 00:00:00+00:00 FR04014 no2 20.0 µg/m³
1 Paris FR 2019-06-20 23:00:00+00:00 FR04014 no2 21.8 µg/m³
2 Paris FR 2019-06-20 22:00:00+00:00 FR04014 no2 26.5 µg/m³
3 Paris FR 2019-06-20 21:00:00+00:00 FR04014 no2 24.9 µg/m³
4 Paris FR 2019-06-20 20:00:00+00:00 FR04014 no2 21.4 µg/m³
In [3]: air_quality.city.unique()
Out[3]: array(['Paris', 'Antwerpen', 'London'], dtype=object)
转换为日期时间对象
默认读取的日期数据,实际上是字符串string 类型,无法进行日期时间的操作,可以转换为datetime数据对象类型,可以用to_datetime() 函数这样操作:
In [5]