数据分析-GroupBy的排序和缺失值处理
数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?
数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。
数据分析
实验数据分析处理,股票序列,时间序列,信号序列,有时候表格的数据需要进行分类,拆分,分组处理,,针对每组进行分类处理,处理后的结果还想汇总起来。这是pandas很常见的使用场景,pandas如何通过groupby,分步骤进行数据分类、处理、汇总呢?
GroupBy 排序参数
默认情况下,组键在操作过程中进行排序。但是还有一种潜在的加速方法。设定参数,groupby``sort=False``sort=False
,组键之间的顺序遵循键在原始数据帧中的出现顺序:
In [1]: df2 = pd.DataFrame({
"X": ["B", "B", "A", "A"], "Y": [1, 2,