在阿里云ECS上一键部署DeepSeek-R1

DeepSeek-R1 是一款开源模型,也提供了 API(接口)调用方式。据 DeepSeek介绍,DeepSeek-R1 后训练阶段大规模使用了强化学习技术,在只有极少标注数据的情况下提升了模型推理能力,该模型性能对标 OpenAl o1 正式版。DeepSeek-R1 推出后,该模型热度持续攀升。

部署流程

  1. 点击 部署链接 进入服务实例部署界面,填写参数并查看询价明细,确认后点击 下一步:确认订单
    在这里插入图片描述

  2. 确认订单,阅读并同意服务协议,点击 立即创建

  3. 部署完成后,进入服务实例详情点击 Address 访问。
    在这里插入图片描述

使用说明

公网 Open WebUI 地址
  1. 访问概览页的 公网 Open WebUI 地址,注册管理员账号并登录。
    在这里插入图片描述

  2. 登录成功后即可使用内置的 DeepSeek-R1 模型进行对话。
    在这里插入图片描述

私网 API 地址
  1. 在同一 VPC 内的 ECS 中访问概览页的 私网 API 地址。使用示例如下:

    curl 私网API地址 -d '{
      "model": "deepseek-r1:latest",
      "prompt": "你是谁?"
    }'
    
  2. 如需通过公网访问 API 地址,需开放安全组 11434 端口,使用公网 API 地址访问:

    curl http://公网ip:11434/api/generate -d '{
      "model": "deepseek-r1:latest",
      "prompt": "你是谁?"
    }'
    

进阶教程

  • 通过面板下载其他模型,支持的模型请查看 Ollama 官网:https://ollama.ai/library
    在这里插入图片描述

  • 在管理员面板中添加其他用户:
    在这里插入图片描述

  • OpenWebUI 中使用联网搜索:

    联网搜索是deepseek比较特别的功能,可以通过查最新的网页作为信息源。详情请查看DeepSeek官网
    配置如下:

    1. 请参考教程获取搜索引擎的clientid和key。
    2. 在管理员处设置以打开此联网搜索功能。
      在这里插入图片描述

总结

通过以上的内容,我们成功在阿里云快速部署体验了 DeepSeek-R1 模型,也测试了其强大的推理能力,这无疑非常适合处理一些高价值且复杂的企业业务场景,尤其对于当前火热的 AI Agent 技术的落地有这非常明显的作用。

### 部署大型语言模型于阿里云ECS #### 使用Docker容器化环境准备 为了简化部署流程并确保运行环境的一致性,推荐采用Docker作为部署工具。对于基于GPU加速的需求,可以参照已有的TensorFlow Serving GPU镜像来构建适合大语言模型的服务环境[^1]。 ```bash docker pull tensorflow/serving:latest-gpu ``` 此命令会拉取最新的带有GPU支持版本的TensorFlow Serving镜像,适用于大多数依赖于TensorFlow框架的大规模预训练模型。 #### ECS实例配置调整 考虑到大型语言模型通常需要较高的计算资源,在创建或修改现有的阿里云ECS实例时应选择配备NVIDIA GPU的实例规格族,并确认驱动程序已经正确安装完毕。这一步骤至关重要,因为只有合适的硬件才能充分发挥模型性能。 #### JDK安装与Java应用兼容性考虑 如果计划部署的应用涉及到了解码器或其他组件是以Java编写,则需提前完成JDK的安装工作。具体操作可以通过执行如下指令实现: ```bash yum -y install java-1.8.0-openjdk* ``` 上述命令能够自动完成OpenJDK 1.8系列软件包及其开发库的安装过程[^3]。不过需要注意的是,现代的语言处理项目可能更倾向于Python生态下的解决方案,因此除非必要否则不必特别关注这一点。 #### 利用DeepSeek-R1快速启动服务 针对希望尽快上线测试场景的情况,可借助DeepSeek-R1提供的图形界面来进行一键式的模型加载和服务发布。该方式不仅降低了技术门槛还提高了工作效率。用户只需登录到管理后台即可轻松获取所需的各种预训练模型列表[^2]。 #### 多模型共存策略规划 当面临多个不同类型的自然语言理解任务需求时,建议采取多租户架构设计思路——即在同一台物理机内部署多个独立运作但资源共享的推理引擎实例。这样既满足了业务多样性又不至于造成过多冗余开销。每增加一个新的模型文件夹结构下应当包含对应的`saved_model.pb`以及变量数据集等要素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值