论文地址:https://arxiv.org/pdf/2109.12843.pdf
目录
顺序推荐 Sequential Recommendation
基于会话的推荐 Session-based Recommendation
跨域推荐 Cross-Domain Recommendation
多行为推荐 Multi-behavior Recommendation
RS历程:
浅层模型、神经模型 和 基于GNN的模型
优势:
图神经网络采用聚合邻域嵌入的方式传播迭代。通过堆叠传播层,每个节点可以访问高阶邻居的信息,而不是像传统方法那样只访问一阶邻居的信息
挑战:
-
推荐系统的数据输入应该仔细、正确地构造成图,节点表示元素,边表示关系
-
对于具体的任务,需要对图神经网络中的组件进行自适应设计,包括如何进行传播和聚合
-
基于GNN模型的优化,包括优化目标、损失函数、数据采样等,应符合任务要求
-
由于推荐系统对计算成本有严格的限制,并且由于GNNs的嵌入传播操作引入了大量计算,因此在推荐系统中高效部署图神经网络是另一个关键挑战
阶段:
-
匹配 Matching
-
从非常大的项目池(百万级甚至十亿级)生成数百个候选项目, 这个阶段的模型通常是简洁的
-
这个阶段的核心任务是高效地检索潜在的相关项,并实现用户兴趣的粗粒度建模
-
-
排序 Ranking
-
来自不同渠道的多个候选项目源被合并到一个列表中,然后通过单个排名模型进行评分
-
排名模型根据分数对这些项目进行排名,并选择排名前几十的项目
-
这一阶段的输入项目数量相对较少,系统可以提供更复杂的算法
-
由于涉及到很多特性,因此此阶段的关键挑战是设计适当的模型以捕获复杂的特性交互
-
-
重新排序 Re-ranking
-
排名阶段后获得的项目列表在相关性方面进行了优化,但可能无法满足其他重要要求,如新鲜度、多样性、公平性
-
通常会删除某些项目或更改列表的顺序,以满足其他条件并满足业务需求
-
这一阶段的主要关注点是考虑最高得分项目之间的多重关系,如 :类似或可替代的项目在建议中紧密显示时可能导致信息冗余
-
场景:
-
社交推荐 Social Recommendation
-
个人行为受到个人和社会因素的驱动,用户的行为可能会受到朋友的行为或想法的影响,这就是所谓的社会影响
-
社会关系常常被整合到推荐系统中,以提高最终的性能,这称为社会推荐
-
-
顺序推荐 Sequential Recommendation
-
用户会随着时间的推移产生大量的交互行为。顺序推荐方法从这些行为序列中提取信息,并预测用户的下一个交互项目
-
顺序推荐使用用户的历史行为序列来学习时间戳感知的顺序模式,以推荐用户可能感兴趣的下一个项目
-
挑战:
-
对于每个样本,在每个序列中,需要从序列中提取用户的兴趣,以预测下一个项目。特别是当序列长度增加时,同时对用户的短期、长期和动态兴趣进行建模是非常具有挑战性的
-
除了在序列内建模外,由于项目可能出现在多个序列中或用户具有多个序列,因此需要捕获不同序列之间的协作信号以更好地表示学习
-
-
-
基于会话的推荐 Session-based Recommendation
-
由于存储资源有限,不可能或不需要长时间跟踪用户id的行为;用户配置文件和长期历史交互不可用,只提供来自匿名用户的短期会话数据
-
使用给定的匿名行为会话数据预测下一个项目。与顺序推荐不同,同一用户的后续会话在SBR(基于会话的推荐)中独立处理,因为每个会话中用户的行为只显示基于会话的特征
-
-
捆绑推荐 Bundle Recommendation
-
捆绑包是一系列物品的集合,是产品促销的重要营销策略,捆绑推荐旨在为用户推荐一组商品供其消费
-
例子:Spotify上的音乐播放列表、Pinterest上的插针板、亚马逊上的电脑套件以及宜家的家具套件
-
-
跨域推荐 Cross-Domain Recommendation
-
用户跨多个域与多模式信息交互
-
缓解冷启动和数据稀疏问题的一种有前途的方法
-
方法分为两类
-
单目标CDR(STCDR)
-
双目标CDR(DTCDR)
-
STCDR方法将信息从源域向目标域单向传输;
-
DTCDR强调源域和目标域信息的相互利用,可以扩展到多目标CDR(MTCDR)。
-
-
-
多行为推荐 Multi-behavior Recommendation
-
在多种类型的行为下交互,而不是仅在一种类型的行为下交互
-
例子:
-
当用户单击视频时,他/她还可能执行收集或评论等行为
-
用户通常在购买产品之前单击、添加到购物车、共享或收集产品
-
对于每个用户u及项目v, 假设有K种不同类型的行为{y1.y2...yk}. 对于第i个行为,如果用户有观察到的行为,则yi=1,否则yi=0
-
目标是提高特定类型目标行为的预测精度
-
-
挑战:
-
不同的行为对目标行为有不同的影响。有些行为可能是强信号,有些可能是弱信号,这种影响对于每个用户都是不同的。准确地模拟这些不同行为对目标行为的影响是一个挑战
-
从项目的不同行为类型中学习综合表征是一项挑战,不同的行为反映了用户对物品的不同偏好;不同的行为有不同的含义。为了获得更好的表征,需要将不同行为的意义整合到表征学习中
-
目标:
-
多样性
-
个体层次的多样性
-
它衡量每个用户推荐项目的不同性
-
个人层面的多样性反映了推荐列表涵盖的主题数量以及推荐项目在不同主题上的分布平衡程度
-
-
系统层次的多样性
-
比较了不同用户的推荐结果,并期望它们彼此不同
-
低系统级多样性意味着总是向所有用户推荐热门项目,而忽略长尾项目
-
系统级多样性有时被称为长尾推荐
-
-
挑战:
-
不同项目的信号强度差异很大。对于每个用户来说,都存在优势话题和劣势话题。从弱势主题或长尾项目分别推荐监管如此薄弱的相关内容是一个挑战
-
多样性有时可能与推荐准确性相矛盾,导致准确性-多样性困境
-
-
-
可解释性
-
可解释的推荐系统的重点不仅是产生准确的推荐结果,而且是对如何以及为什么向特定用户推荐商品产生有说服力的解释
-
增加推荐系统的可解释性可以增强用户感知的透明度、说服力和可信度,并便于从业者调试和完善系统
-
采用了两种不同的方法
-
一种是努力设计内在的可解释模型,通过设计具有透明逻辑(而不仅仅是“黑箱”)的模型来确保推荐结果的可解释性
-
例如:显式因素模型[202]、隐藏因素和主题模型[106]和TriRank
-
-
另一种,他们设计了事后独立的模型来解释“黑箱”推荐系统产生的结果
-
例如:解释挖掘
-
-
-
挑战:
-
表示可解释的信息需要图形结构项属性,没有GNN的强大功能,很难对这些属性进行建模
-
推理建议依赖于知识图中的外部知识,这也对任务提出了挑战
-
-
-
公平性
-
用户公平性
-
试图确保特定用户或人口统计组之间没有算法偏差
-
-
项目公平性
-
它表示不同项目的公平暴露,或者不同项目之间没有受欢迎程度偏差
-
-
增强公平性的两种方法:
-
在训练过程中直接扣除推荐结果
-
在后处理方法中努力对项目进行排序以缓解不公平性
-
-
图形数据(如用户-用户)的利用可能会加剧对公平性的担忧
-
挑战:
-
在丰富的图形数据背景下,将推荐视为不公平是一个挑战,从图的角度来看,提高用户推荐的公平性更为困难
-
-
应用:
-
产品推荐
-
推荐时建议同时优化点击率和转换率,
-
产品可能具有丰富的属性,如价格,类别等,在此基础上可以构建异构图
-
-
兴趣点推荐
-
为用户下次访问推荐新的位置/兴趣点
-
有两个重要的因素
-
空间因素: 指POI自然存在的地理属性 如地理位置
-
时间因素: 用户的访问 / 签入行为总是形成一个序列 引发了下一个POI或后续POI建议的问题
-
-
-
新闻推荐
-
对新闻文本进行适当的建模,与自然语言处理方法相结合,以便更好地提取新闻特征
-
准确地从快速变化的候选库中筛选新闻也是至关重要
-
-
电影推荐
-
估计用户对电影的评分,从1分到5分,即显式反馈。最近,二元隐式反馈已成为更流行的设置
-
-
其他:视频推荐、音乐推荐、工作推荐、食品推荐 等
GNN
-
图形构造。构造图需要预先存在的图数据或从非结构化数据中抽象出图节点和边的概念
-
定义图 G = ( V , E )
-
齐次图:其中每个边只连接两个节点,并且只有一种类型的节点和边。
-
异构图:其中每条边只连接两个节点,并且有多种类型的节点或边
-
超 图:其中每条边连接两个以上的节点
-
-
例子:
-
以自然语言处理(NLP)中使用的文本数据为例,将单词/文档描述为节点,并根据术语频率逆文档频率(IF-ITF)构造它们之间的边
-
知识图(KG),是异构图的一个典型实例。其中节点和边分别被重新定义为实体和关系。KG中的实体可以覆盖广泛的元素,包括人物、电影、书籍等。这些关系用于描述实体如何相互关联。
-
-
-
网络设计。
-
光谱模型
-
谱模型将图看作信号,并在谱域中用图卷积来处理它们
-
首先通过定义在图形上的傅里叶变换将图形信号转换为谱域,然后应用滤波器,最后将处理后的信号转换回空间域
-
-
空间模型
-