倍增法求LCA(最近公共祖先)

本文介绍了一种求解最近公共祖先(LCA)问题的有效算法——倍增法,并给出了详细的实现步骤与代码示例。该算法首先通过深度优先搜索(DFS)计算节点深度,然后利用倍增技巧加速查询过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实在太蠢了搞不定ST表o(╥﹏╥)o,只能学个倍增法了。

讲倍增法前先看看暴力法。
第一步肯定是dfs求每个点的深度。
查询lca(a,b)时,先把ab中深度较大的点往上移,移到两个点深度相同为止;
现在两个点深度相同了,于是两个点一起往上移,直至移到同一个位置,即最近公共祖先。

倍增法其实就是在暴力的基础上,对把两个点上移的过程进行倍增操作(因为一步一步走真的很慢啊)

倍增操作即:如果向上移动 2i2i 步后,两个点的位置仍不相同,则把两个点直接往上移 2i2i
(为什么两个点的位置不能相同?因为相同的话大概率就跑过头了啊)
i从树的最大深度开始递减,这样往上走,最终两个点会相聚在最近公共祖先,或差一步到达最近公共祖先
操作的过程中需要预处理的量:
fa[ ]数组,fa[v] = u表示v的父节点为u
anc[ ][ ]数组,anc[i][j] = k表示节点 i 往上走 2j2j 步会走到节点k
in[ ],out[ ],dfs序的入出时间戳(特判会用到,见代码注释)
deep[ ]数组,deep[u]=d表示节点u的深度为d
树的最大深度m,可以默认20,也可以根据输入的N算一下

anc的求法:
显然anc[i][0] = fa[i]
容易得到,i向上走 2j2j 步的位置与i先向上走 2j12j−1 步,再向上走 2j12j−1 步是一样的,
即: anc[i][j] = anc[anc[i][j-1]][j-1]

模板题poj1330的代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;

const int maxn = 10010;

struct edge
{
    int to,next;
}e[maxn<<1];
int head[maxn<<1],cnt,fa[maxn],anc[maxn][20],in[maxn],out[maxn],tot,m;
void add(int u,int v)
{
    e[tot].next = head[u];
    e[tot].to = v;
    head[u] = tot++;
}

void init(int N)
{
    m = ceil(log(N+0.0)/log(2.0));
    cnt = 0;
    memset(head,-1,8*N);
    memset(fa,0,4*N);
    memset(anc,0,80*N);
    tot = 0;
}

int deep[maxn],maxdeep;
void dfs(int u,int pre,int d)
{
    in[u] = ++cnt;
    deep[u] = d;
    anc[u][0] = fa[u];
    for(int i=1;i<=m;++i)
    {
        anc[u][i] = anc[anc[u][i-1]][i-1];
        if(!anc[u][i])
            break;
    }
    for(int i=head[u];~i;i=e[i].next)
    {
        int v = e[i].to;
        if(v == pre)
            continue;
        dfs(v,u,d+1);
    }
    out[u] = cnt;
}

int lca(int a,int b)
{
    if(deep[a]>deep[b])//保证a在上面
        swap(a,b);
    if(in[a]<=in[b]&&out[b]<=out[a])//在dfs序中,a夹着b,即b在a的子树中,
        return a;                   //最近公共祖先显然是a
    for(int i=m;~i;--i)
        if(deep[a]<deep[b]&&deep[a]<=deep[anc[b][i]])
            b = anc[b][i];//上移至深度相同,也可以倍增
    for(int i=m;~i;--i)
    {
        if(anc[a][i]!=anc[b][i])
            a = anc[a][i],b = anc[b][i];
    }
    return anc[a][0];
}

int T,N,u,v,rt,a,b;
int main()
{
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&N);
        init(N);
        for(int i=1;i<N;++i)
        {
            scanf("%d%d",&u,&v);
            add(u,v);
            add(v,u);
            fa[v] = u;
        }
        rt = 1;
        while(fa[rt]) ++rt;
        dfs(rt,rt,1);
        scanf("%d%d",&a,&b);
        printf("%d\n",lca(a,b));
    }
    return 0;
}
//(PS:单论这题的最优解法应该是暴力,因为只有一组查询。。。)
### 使用倍增法最近公共祖先 (LCA) 的算法实现与解释 #### 算法概述 倍增法是一种高效的动态规划技术,适用于处理静态树结构中的查询问题。该方法通过预先计算并存储每个节点的第 \(2^i\)祖先来加速后续查询过程。 #### 数据预处理阶段 为了能够快速定位任意两点间的最近公共祖先,在初始化时需构建辅助数组 `f` 和记录各顶点深度的数组 `depth` 。其中 `f[u][j]` 表示从节点 u 出发经过 \(2^j\) 步所能到达的父亲节点位置;当 j=0 时表示直接父亲节点的位置。 ```cpp void dfs(int node, int parent){ depth[node]=depth[parent]+1; f[node][0]=parent; // 初始化每一点的第一层祖先为自己真正的父节点 for(int i = 1 ;(1<<i)<=depth[node];++i) f[node][i]=f[f[node][i-1]][i-1]; for(auto child : adj[node]) if(child!=parent) dfs(child,node); } ``` 上述代码片段实现了自底向上的遍历操作,并完成了对 `f[][]` 数组以及 `depth[]` 数组的填充工作[^1]。 #### 查询函数设计 在完成数据准备之后就可以编写具体的询问逻辑了: 1. **调整两结点至相同高度** 如果两个待查节点不在同一层次,则先让较深的那个往上跳若干步直至两者处于平行状态为止; 2. **同步上升寻找共同祖先** 接着利用之前建立起来的信息表不断尝试使二者同时沿路径返回根部方向移动,直到它们首次交汇于某处即为目标答案所在之处。 3. **特殊情况判断** 若其中一个目标本身就是另一个的目标之一则无需执行第二步流程可直接给出结论。 下面是完整的 C++ 版本实现方式: ```cpp int lca_query(int a,int b){ if(depth[a]<depth[b]) swap(a,b); // 让a成为更深的一个点 for(int k=logn;k>=0;--k){ // 将a提升到b的高度 if((depth[a]-depth[b])&(1<<k)) a=f[a][k]; } if(a==b)return a; for(int k=logn;k>=0;--k){ if(f[a][k]!=f[b][k]){ a=f[a][k]; b=f[b][k]; } } return f[a][0]; } ``` 此段程序展示了如何基于前期准备工作高效地获取指定节点之间的最低公共祖先关系[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值