1 491. 非递减子序列
题目:给你一个整数数组 nums
,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。
提示:
1 <= nums.length <= 15
-100 <= nums[i] <= 100
思路: 本题求子序列,及元素不能重复使用,需要记录每次递归新的开始下标;当每次递归开始时,要判断当前path中元素个数是否满足的输出子集的要求。
注意:使用辅助函数used时,因为提示说明数列中元素在[-100,100]的区间内,所以设置used在0-201即可,令nums[i]+100能保证在范围内。同时,单纯用数字计算下标,可以对同层中使用相同元素的路径进行剪枝。
Java实现
class Solution {
List<List<Integer>> result = new ArrayList<>();
List<Integer> path = new ArrayList<>();
public List<List<Integer>> findSubsequences(int[] nums) {
backTracking(nums,0);
return result;
}
private void backTracking(int[] nums,int startIndex){
if(path.size() > 1){
result.add(new ArrayList<>(path));
}
int[] used = new int[201]; // -100<=nums[i]<=100
for(int i = startIndex; i<nums.length; i++){
if(!path.isEmpty() && nums[i]<path.get(path.size()-1) || (used[nums[i]+100] == 1)){
continue;
}
used[nums[i]+100] = 1;
path.add(nums[i]);
backTracking(nums,i+1);
path.remove(path.size()-1);
}
}
}
2 46. 全排列
题目:给定一个不含重复数字的数组 nums
,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
提示:
1 <= nums.length <= 6
-10 <= nums[i] <= 10
nums
中的所有整数 互不相同
思路:返回不重复元素数组的所有全排列,还是采用子集的方法,每个元素只能用一次;不需要剪枝。
注意:因为是全排列,因此,每次递归时需要从头开始判断,因此借助used记录使用过的元素,但不需要传递新的开始位置。
Java实现
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
boolean[] used;
public List<List<Integer>> permute(int[] nums) {
if(nums.length == 0){
return result;
}
used = new boolean[nums.length];
premuteHelper(nums);
return result;
}
private void premuteHelper(int[] nums){
if(path.size() == nums.length){
result.add(new ArrayList<>(path));
return;
}
for(int i=0;i<nums.length;i++){
if(used[i] == true){
continue;
}
used[i] = true;
path.add(nums[i]);
premuteHelper(nums);
path.removeLast();
used[i] = false;
}
}
}
3 47. 全排列 II
题目:给定一个可包含重复数字的序列 nums
,按任意顺序 返回所有不重复的全排列。
提示:
1 <= nums.length <= 8
-10 <= nums[i] <= 10
思路:本题重点在于包含重复数字,但是要求不重复全排列,这里就需要进行剪枝。剪枝前先排序才能保证不重复。构造树形结构来解决,当每层选择元素时,相同的元素已经被选择后,再次选中值相同的下一个元素时要剪枝。
注意:修建同层同值元素时,首先判断是否值相同,在相同的前提下,如果前一个元素未被使用,那么这一只应该被剪掉。
Java实现
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> permuteUnique(int[] nums) {
boolean[] used = new boolean[nums.length];
Arrays.fill(used,false);
Arrays.sort(nums);
backTrack(nums,used);
return result;
}
private void backTrack(int[] nums,boolean[] used){
if(path.size() == nums.length){
result.add(new ArrayList<>(path));
return ;
}
for(int i=0; i<nums.length; i++){
// 修剪同一层相同元素
if(i>0 && nums[i] == nums[i-1] && used[i-1] == false){
continue;
}
if(used[i] ==false){
used[i] = true;
path.add(nums[i]);
backTrack(nums,used);
path.remove(path.size()-1);
used[i] = false;
}
}
}
}