LLMChain是一个简单的链,接受一个提示模板,使用用户输入格式化它并从LLM返回响应。
其中,prompt_template是一个非常关键的组件,可以让你创建一个非常简单的链,它将接收用户输入,使用它格式化提示,然后将其发送到LLM。
1. 配置OLLaMA
在使用LLMChain之前,需要先配置OLLaMA,OLLaMA可以运行本地大语言模型,模型名称如下:
https://ollama.com/library
每个模型都有其特点和适用场景:
- Llama 2:这是一个预训练的大型语言模型,具有7B、13B和70B三种不同规模的模型。Llama 2增加了预训练语料,上下文长度从2048提升到4096,使得模型能够理解和生成更长的文本。
- OpenHermes:这个模型专注于代码生成和编程任务,适合用于软件开发和脚本编写等场景。
- Solar:这是一个基于Llama 2的微调版本,专为对话场景优化。Solar在安全性和有用性方面进行了人工评估和改进,旨在成为封闭源模型的有效替代品。
- Qwen:7B:这是一个中文微调过的模型,特别适合处理中文文本。它需要至少8GB的内存进行推理,推荐配备16GB以流畅运行。
综上所述,这些模型各有侧重点,用户可以根据自己的需求选择合适的模型进行使用。
下载的模型列表,可以通过以下命令来查看:
ollama list
NAME ID SIZE MODIFIED
llama2:latest 78e26419b446 3.8 GB 38 hours ago
llama2-chinese:13b 990f930d55c5 7.4 GB 2 days ago
qwen:7b 2091ee8c8d8f 4.5 GB 7 days ago
qwen:latest d53d04290064 2.3 GB 2 days ago
1.1 安装
ollama官网 https://ollama.com/
1.2 下载模型
以通义千问模型为例:
ollama run 模型名
ollama run qwen:7b
qwen下载.png