LoRA的解释:一种高效微调预训练神经网络的方法
LoRA 解决的问题:
🔸 2021年初,微软与OpenAI合作探索GPT-3的商业可行性。
🔸 发现仅仅通过提示(prompting)不足以完成生产任务,例如将自然语言转换为代码生成任务。
🔸 微调是必要的,但由于模型检查点的规模庞大,成本过高。
工作原理:
🔸 LoRA通过提出两个问题来推广全量微调(更新每个参数):
- 是否需要微调所有参数?
- 对于我们要微调的权重矩阵,更新在矩阵秩方面应该有多大的表达能力?
🔸 这两个问题定义了一个二维平面,在这个平面上,全量微调位于一个角(满秩且更新所有参数),而原点代表原始模型。
🔸 平面中的任意一点都是一个有效的LoRA配置。
🔸 更新矩阵的选定秩控制了微调过程的表达能力。
🔸 一个d×d的矩阵可以表示d维向量空间中的任何线性变换。
🔸 通过首先将输入转换到一个较低维度的空间,然后再转回原始空间,我们可以限制可以表示的线性变换类型。
🔸 这样可以减少需要存储的参数数量,从(dxd)减少到(dxr + dxr),其中r << d。
🔸 接近原点的点通常表现得与全量微调一样好——因为通常神经网络过度参数化&#x