大模型面试之LoRA

LoRA的解释:一种高效微调预训练神经网络的方法

LoRA 解决的问题:

🔸 2021年初,微软与OpenAI合作探索GPT-3的商业可行性。

🔸 发现仅仅通过提示(prompting)不足以完成生产任务,例如将自然语言转换为代码生成任务。

🔸 微调是必要的,但由于模型检查点的规模庞大,成本过高。

工作原理:

🔸 LoRA通过提出两个问题来推广全量微调(更新每个参数):

- 是否需要微调所有参数?

- 对于我们要微调的权重矩阵,更新在矩阵秩方面应该有多大的表达能力?

🔸 这两个问题定义了一个二维平面,在这个平面上,全量微调位于一个角(满秩且更新所有参数),而原点代表原始模型。

🔸 平面中的任意一点都是一个有效的LoRA配置。

🔸 更新矩阵的选定秩控制了微调过程的表达能力。

🔸 一个d×d的矩阵可以表示d维向量空间中的任何线性变换。

🔸 通过首先将输入转换到一个较低维度的空间,然后再转回原始空间,我们可以限制可以表示的线性变换类型。

🔸 这样可以减少需要存储的参数数量,从(dxd)减少到(dxr + dxr),其中r << d。

🔸 接近原点的点通常表现得与全量微调一样好——因为通常神经网络过度参数化,因此权重矩阵中充满了线性相关的元素。

🔸 这表明我们可以从低秩配置开始,并根据需要逐渐增加秩。

使用LoRA的常见做法:

🔸 如何选择更新矩阵的秩R:从低秩开始,并根据需要增加。

🔸 何时使用全量微调?:当在数据集上进行微调,这些数据集完全不同于基础模型预训练的数据集时(例如,如果你正在用火星语数据对英语模型进行微调,则可能需要全量微调)。

🔸 LoRA是否适用于任何模型架构?:只要模

### 常见的大模型微调面试问题及解答 #### 1. 大模型微调的概念与应用场景 大模型微调是指通过调整预训练好的大规模语言模型参数来适应特定任务的过程。这种方法可以显著减少数据需求并提高性能,尤其适用于资源有限的任务场景[^1]。 #### 2. 微调过程中如何防止过拟合? 为了预防过拟合,在微调阶段通常会采取一系列措施,比如控制学习率衰减策略、应用正则化技术以及利用早停法等手段。这些方法有助于保持泛化能力的同时优化目标函数的表现。 #### 3. 如何选择合适的预训练模型进行迁移学习? 挑选适合具体项目的预训练模型时需考虑多个因素,包括但不限于源域和目标任务之间的相似度、可用计算资源量级以及预期效果的要求等方面。合理评估上述要素能够帮助找到最匹配的应用方案。 #### 4. 解释一下LoRA(Low-Rank Adaptation)是什么? 低秩自适应(LoRA)是一种高效的微调框架,它通过对原始权重矩阵施加结构化的约束条件从而实现更少更新次数下的有效改进。此方式不仅降低了存储开销还加快了收敛速度,特别适配于超大规模的语言建模任务中。 ```python import torch.nn as nn class LoRALinear(nn.Module): def __init__(self, in_features, out_features, rank=4): super().__init__() self.linear = nn.Linear(in_features, out_features) self.lora_A = nn.Parameter(torch.randn(rank, in_features)) self.lora_B = nn.Parameter(torch.randn(out_features, rank)) def forward(self, x): base_output = self.linear(x) lora_output = (self.lora_B @ self.lora_A) * x.unsqueeze(-2).expand_as(base_output) return base_output + lora_output.sum(dim=-2) ``` #### 5. P-tuning 和 Prompt Tuning 的区别在哪里? P-Tuning主要关注的是对连续提示向量的学习过程;而Prompt Tuning则是基于离散文本模板的设计来进行参数调节。两者虽然都旨在增强下游任务表现力,但在操作层面存在明显差异——前者涉及更多复杂的梯度下降机制,后者相对简单直观得多。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值