大模型面试之LoRA

LoRA的解释:一种高效微调预训练神经网络的方法

LoRA 解决的问题:

🔸 2021年初,微软与OpenAI合作探索GPT-3的商业可行性。

🔸 发现仅仅通过提示(prompting)不足以完成生产任务,例如将自然语言转换为代码生成任务。

🔸 微调是必要的,但由于模型检查点的规模庞大,成本过高。

工作原理:

🔸 LoRA通过提出两个问题来推广全量微调(更新每个参数):

- 是否需要微调所有参数?

- 对于我们要微调的权重矩阵,更新在矩阵秩方面应该有多大的表达能力?

🔸 这两个问题定义了一个二维平面,在这个平面上,全量微调位于一个角(满秩且更新所有参数),而原点代表原始模型。

🔸 平面中的任意一点都是一个有效的LoRA配置。

🔸 更新矩阵的选定秩控制了微调过程的表达能力。

🔸 一个d×d的矩阵可以表示d维向量空间中的任何线性变换。

🔸 通过首先将输入转换到一个较低维度的空间,然后再转回原始空间,我们可以限制可以表示的线性变换类型。

🔸 这样可以减少需要存储的参数数量,从(dxd)减少到(dxr + dxr),其中r << d。

🔸 接近原点的点通常表现得与全量微调一样好——因为通常神经网络过度参数化&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值