Numpy简单学习入门

1.Numpy库介绍

NumPy是一个功能强大的Python库,主要用于对多维数组执行计算。NumPy这个词来源于两个单词-- NumericalPythonNumPy提供了大量的库函数和操作,可以帮助程序员轻松地进行数值计算。在数据分析和机器学习领域被广泛使用。他有以下几个特点:

  1. numpy内置了并行运算功能,当系统有多个核心时,做某种计算时,numpy会自动做并行计算。
  2. Numpy底层使用C语言编写,内部解除了GIL(全局解释器锁),其对数组的操作速度不受Python解释器的限制,效率远高于纯Python代码。
  3. 有一个强大的N维数组对象Array(一种类似于列表的东西)。
  4. 实用的线性代数、傅里叶变换和随机数生成函数。

总而言之,他是一个非常高效的用于处理数值型运算的包。

1.1 Numpy数组和Python列表性能对比:

比如我们想要对一个Numpy数组和Python列表中的每个数进行求平方。那么代码如下:

# Python列表的方式
t1 = time.time()
a = []
for x in range(1000000):
    a.append(x**2)
t2 = time.time()
t = t2 - t1
print(t)

花费时间0.1980s

b2 = np.arange(1000000,dtype=np.int64)**2
print(b2.dtype)
print(b2)

花费时间 0.005s,可以看到计算速度成几何倍数增长

注: 这里花费时间和cpu性能有关

2.NumPy数组基本用法

  1. NumpyPython科学计算库,用于快速处理任意维度的数组。
  2. NumPy提供一个N维数组类型ndarray,它描述了相同类型的“items”的集合。
  3. numpy.ndarray支持向量化运算。
  4. NumPy使用c语言写的,底部解除了GIL,其对数组的操作速度不在受python解释器限制。

2.1 numpy中的数组:

Numpy中的数组的使用跟Python中的列表非常类似。他们之间的区别如下:

  1. 一个列表中可以存储多种数据类型。比如a = [1,'a']是允许的,而数组只能存储同种数据类型。
  2. 数组可以是多维的,当多维数组中所有的数据都是数值类型的时候,相当于线性代数中的矩阵,是可以进行相互间的运算的。

Numpy经常和数组打交道,因此首先

第一步是要学会创建数组。在Numpy中的数组的数据类型叫做ndarray。以下是两种创建的方式:

2.2 创建数组(np.ndarray对象)

Numpy经常和数组打交道,因此首先第一步是要学会创建数组。在Numpy中的数组的数据类型叫做ndarray。以下是两种创建的方式:

1.根据Python中的列表生成:

import numpy as np
a1 = np.array([1,2,3,4])
print(a1)
print(type(a1))

2.使用np.arange生成

使用np.arange生成np.arange的用法类似于Python中的range

import numpy as np
a2 = np.arange(2,21,2)
print(a2)

3.使用np.random生成随机数的数组:

a1 = np.random.random(2,2) # 生成2行2列的随机数的数组
a2 = np.random.randint(0,10,size=(3,3)) # 元素是从0-10之间随机的3行3列的数组

4.使用函数生成特殊的数组:

import numpy as np
a1 = np.zeros((2,2))  #生成一个所有元素都是0的2行2列的数组
a2 = np.ones((3,2)) #生成一个所有元素都是1的3行2列的数组
a3 = np.full((2,2),8) #生成一个所有元素都是8的2行2列的数组
a4 = np.eye(3) #生成一个在斜方形上元素为1,其他元素都为0的3x3的矩阵

2.3 ndarray常用属性

ndarray.dtype

因为数组中只能存储同一种数据类型,因此可以通过dtype获取数组中的元素的数据类型。以下是ndarray.dtype的常用的数据类型:
请添加图片描述

我们可以看到,Numpy中关于数值的类型比Python内置的多得多,这是因为Numpy为了能高效处理处理海量数据而设计的。举个例子,比如现在想要存储上百亿的数字,并且这些数字都不超过254(一个字节内),我们就可以将dtype设置为int8,这样就比默认使用int64更能节省内存空间了。类型相关的操作如下:

import numpy as np
a1 = np.array([1,2,3])
print(a1.dtype) 
# 如果是windows系统,默认是int32
# 如果是mac或者linux系统,则根据系统来

ndarray.size

获取数组中总的元素的个数。比如有个二维数组:

import numpy as np
a1 = np.array([[1,2,3],[4,5,6]])
print(a1.size) #打印的是6,因为总共有6个元素

ndarray.ndim

数组的维数。比如:

a1 = np.array([1,2,3])
print(a1.ndim) # 维度为1
a2 = np.array([[1,2,3],[4,5,6]])
print(a2.ndim) # 维度为2
a3 = np.array([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]])
print(a3.ndim) # 维度为3

ndarray.shape

数组的维度的元组。比如以下代码:

   a1 = np.array([1,2,3])
   print(a1.shape) # 输出(3,),意思是一维数组,有3个数据

   a2 = np.array([[1,2,3],[4,5,6]])
   print(a2.shape) # 输出(2,3),意思是二位数组,2行3列

   a3 = np.array([
       [
           [1,2,3],
           [4,5,6]
       ],
       [
           [7,8,9],
           [10,11,12]
       ]
   ])
   print(a3.shape) # 输出(2,2,3),意思是三维数组,总共有2个元素,每个元素是2行3列的

   a44 = np.array([1,2,3],[4,5])
   print(a4.shape) # 输出(2,),意思是a4是一个一维数组,总共有2列
   print(a4) # 输出[list([1, 2, 3]) list([4, 5])],其中最外面层是数组,里面是Python列表

ndarray.reshape

ndarray.reshape来重新修改数组的维数

a1 = np.arange(12) #生成一个有12个数据的一维数组
print(a1) 

a2 = a1.reshape((3,4)) #变成一个2维数组,是3行4列的
print(a2)

a3 = a1.reshape((2,3,2)) #变成一个3维数组,总共有2块,每一块是2行2列的
print(a3)

a4 = a2.reshape((12,)) # 将a2的二维数组重新变成一个12列的1维数组
print(a4)

a5 = a2.flatten() # 不管a2是几维数组,都将他变成一个一维数组
print(a5)

reshape并不会修改原来数组本身,而是会将修改后的结果返回。如果想要直接修改数组本身,那么可以使用resize来替代reshape

ndarray.itemsize

数组中每个元素占的大小,单位是字节。比如以下代码:

   a1 = np.array([1,2,3],dtype=np.int32)
   print(a1.itemsize) # 打印4,因为每个字节是8位,32位/8=4个字节

3.Numpy数组操作

3.1 索引和切片

获取某一行的数据

a1= np.arrange(0,29)
print(a1[1])  # 获取下标为1的行的数据

连续获取某几行的数据:

 # 1. 获取连续的几行的数据
 a1 = np.arange(0,24).reshape((4,6))
 print(a1[0:2]) #获取0行到1行的数据
 # 2. 获取不连续的几行的数据
 print(a1[[0,2,3]])
 # 3. 也可以使用负数进行索引
 print(a1[[-1,-2]])

获取某行某列的数据

a1 = np.arange(0,24).reshape((4,6))
print(a1[1,1]) #获取1行1列的数据

print(a1[0:2,0:2]) #获取0-1行的0-1列的数据
print(a1[[1,2],[2,3]]) #获取(1,2)和(2,3)的两个数据,这也叫花式索引

获取某列的数据

 a1 = np.arange(0,24).reshape((4,6))
 print(a1[:,1]) #获取第1列的数据

3.2 布尔索引

布尔运算也是矢量的,比如以下代码:

a1 = np.arange(0,24).reshape((4,6))
print(a1<10) #会返回一个新的数组,这个数组中的值全部都是bool类型
> [[ True  True  True  True  True  True]
 [ True  True  True  True False False]
 [False False False False False False]
 [False False False False False False]]

要将a1数组中所有小于10的数据全部都提取出来。那么可以使用以下方式实现:

a1 = np.arange(0,24).reshape((4,6))
a2 = a1 < 10
print(a1[a2]) #这样就会在a1中把a2中为True的元素对应的位置的值提取出来

其中布尔运算可以有!===><>=<=以及&(与)|(或)。示例代码如下:

a1 = np.arange(0,24).reshape((4,6))
a2 = a1[(a1 < 5) | (a1 > 10)]
print(a2)

3.3 值的替换

利用索引,也可以做一些值的替换。把满足条件的位置的值替换成其他的值。比如以下代码

a1 = np.arange(0,24).reshape((4,6))
a1[3] = 0 #将第三行的所有值都替换成0
print(a1)

也可以使用条件索引来实现

a1 = np.arange(0,24).reshape((4,6))
a1[a1 < 5] = 0 #将小于5的所有值全部都替换成0
print(a1)

还可以使用函数来实现:

## where函数:
a1 = np.arange(0,24).reshape((4,6))
a2 = np.where(a1 < 10,1,0) #把a1中所有小于10的数全部变成1,其余的变成0
print(a2)

4.数组的形状操作

可以通过一些函数,非常方便的操作数组的形状。

4.1 reshape和resize方法:

两个方法都是用来修改数组形状的,但是有一些不同。

1.reshape是将数组转换成指定的形状,然后返回转换后的结果,对于原数组的形状是不会发生改变的。调用方式:

a1 = np.random.randint(0,10,size=(3,4))
a2 = a1.reshape((2,6)) #将修改后的结果返回,不会影响原数组本身

2.resize是将数组转换成指定的形状,会直接修改数组本身。并不会返回任何值。调用方式

a1 = np.random.randint(0,10,size=(3,4))
a1.resize((2,6)) #a1本身发生了改变

4.2 flatten和ravel方法

两个方法都是将多维数组转换为一维数组,但是有以下不同:

  1. flatten是将数组转换为一维数组后,然后将这个拷贝返回回去,所以后续对这个返回值进行修改不会影响之前的数组。
  2. ravel是将数组转换为一维数组后,将这个视图(可以理解为引用)返回回去,所以后续对这个返回值进行修改会影响之前的数组。 比如以下代码:
x = np.array([[1, 2], [3, 4]])
x.flatten()[1] = 100 #此时的x[0]的位置元素还是1
x.ravel()[1] = 100 #此时x[0]的位置元素是100

4.3 数据的拼接

如果有多个数组想要组合在一起,也可以通过其中的一些函数来实现。

1.vstack:将数组按垂直方向进行叠加。数组的列数必须相同才能叠加。示例代码如下:

a1 = np.random.randint(0,10,size=(3,5))
a2 = np.random.randint(0,10,size=(1,5))
a3 = np.vstack([a1,a2])

2.hstack:将数组按水平方向进行叠加。数组的行必须相同才能叠加。示例代码如下:

a1 = np.random.randint(0,10,size=(3,2))
a2 = np.random.randint(0,10,size=(3,1))
a3 = np.hstack([a1,a2])

3.concatenate([],axis):将两个数组进行叠加,但是具体是按水平方向还是按垂直方向。则要看axis的参数,如果axis=0,那么代表的是往垂直方向(行)叠加,如果axis=1,那么代表的是往水平方向(列)上叠加,如果axis=None,那么会将两个数组组合成一个一维数组。需要注意的是,如果往水平方向上叠加,那么行必须相同,如果是往垂直方向叠加,那么列必须相同。示例代码如下:

a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6]])
np.concatenate((a, b), axis=0)
# 结果:
array([[1, 2],
    [3, 4],
    [5, 6]])

np.concatenate((a, b.T), axis=1)
# 结果:
array([[1, 2, 5],
    [3, 4, 6]])

np.concatenate((a, b), axis=None)
# 结果:
array([1, 2, 3, 4, 5, 6])

4.4 数组的切割

通过hsplitvsplit以及array_split可以将一个数组进行切割。

1.hsplit:按照水平方向进行切割。用于指定分割成几列,可以使用数字来代表分成几部分,也可以使用数组来代表分割的地方。示例代码如下:

a1 = np.arange(16.0).reshape(4, 4)
np.hsplit(a1,2) #分割成两部分
>>> array([[ 0.,  1.],
     [ 4.,  5.],
     [ 8.,  9.],
     [12., 13.]]), array([[ 2.,  3.],
     [ 6.,  7.],
     [10., 11.],
     [14., 15.]])]

np.hsplit(a1,[1,2]) #代表在下标为1的地方切一刀,下标为2的地方切一刀,分成三部分
>>> [array([[ 0.],
     [ 4.],
     [ 8.],
     [12.]]), array([[ 1.],
     [ 5.],
     [ 9.],
     [13.]]), array([[ 2.,  3.],
     [ 6.,  7.],
     [10., 11.],
     [14., 15.]])]

4.4 数组(矩阵)转置和轴对换

numpy中的数组其实就是线性代数中的矩阵。矩阵是可以进行转置的。ndarray有一个T属性,可以返回这个数组的转置的结果。示例代码如下:

a1 = np.arange(0,24).reshape((4,6))
a2 = a1.T
print(a2)

另外还有一个方法叫做transpose,这个方法返回的是一个View,也即修改返回值,不会影响到原来数组。示例代码如下

a1 = np.arange(0,24).reshape((4,6))
a2 = a1.transpose()

为什么要进行矩阵转置呢,有时候在做一些计算的时候需要用到。比如做矩阵的内积的时候。就必须将矩阵进行转置后再乘以之前的矩阵:

a1 = np.arange(0,24).reshape((4,6))
a2 = a1.T
print(a1.dot(a2))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值