千帆竞发百舸争流,自人工智能大模型在国内有了新突破后,制造行业也蠢蠢欲动,争先研究人工智能与制造融合新模式。
(一)人工智能赋能制造业远景
制造业产业链的终端是用户,目的是满足用户产品个性化定制需求、高质高效生产、高品质服务。人工智能从这三个维度赋能制造业可以产生出人工智能+产品、人工智能+制造、人工智能+售后服务三大方向。
(1)人工智能+产品:为产品植入计算、感知和思考能力,在可控范围内协助人做一些指令性工作;能够预警故障或危险,并能够做出应急反应。
(2)人工智能+制造:对于少品种多批量的制造企业,自动化程度高的装备就能实现无人化,不需要人工智能技术赋能;对于多品种少批量工艺复杂的制造企业,要实现人机协同甚至无人化,需要在数字化基础设施覆盖的基础上升级改造制造执行系统(MES)、制造感知和执行单元等,模拟设计员、工艺员、计划员、调度员、质检员、库管员等角色功能形成AI设计员、AI工艺员、AI计划员、AI调度员等一系列智能体。
(3)人工智能+售后服务:如何为不同的用户提供最便捷服务,决定了用户的满意度。构建售后服务知识库,开发智能小助手,用户提问关于产品的使用、保养、维修等问题,小助手能给出合理的解决方案。
(二)人工智能赋能制造业技术难点
人工智能是通过计算机模拟、延伸和扩展人类智能的科学与技术,旨在创建能够执行需要人类智能的任务的智能系统。人工智能赋能制造业难点不在AI智能体的构建,而是如何让AI智能体像产线上的人一样承担职责范围内的工作。
人工智能的关键技术有机器学习、深度学习、自然语言处理、计算机视觉、机器人技术,其核心都是通过算法、数据和计算能力实现自主学习、推理、决策和交互能力。所以要实现人工智能赋能制造制造要解决三大难点:数据的治理、制造大模型的构建与训练、人工智能与制造执行系统/执行终端等集成。
(三)人工智能赋能制造业实施路径
人工智能赋能制造业的实施路径需结合技术特性、产业基础与业务场景,分阶段、分层次推进先加强基础能力建设夯实技术底座,然后从试点到规模化应用实现技术落地,最后构建开放创新体系实现产业链协同。
(1)数据治理和工业化知识沉淀。建立统一数据标准(ISO 8000工业数据规范),打通ERP、MES、PLC系统间数据孤岛;构建行业知识图谱(如机械加工参数库等),将专家经验转化为可计算的规则库;利用工业数据中台等工具实现多源异构数据融合。
(2)算力与算法基础设施。部署能够训练大模型的服务器群或智能芯片。
(3)开发制造大模型,并与制造场景集成。开发制造大模型是人工智能与制造业深度融合的核心技术路径,需结合工业场景特性、数据特征与业务需求进行针对性设计,需坚持“场景驱动、知识融合、持续进化”三大原则,通过构建“数据-算法-知识”三位一体的智能底座,推动制造业从“经验依赖”向“智能涌现”跃迁。
(4)仿真验证与试点示范。选取具有代表性的场景,先采用“数字孪生+仿真测试”验证方案可行性,减少物理环境试错成本。然后,进行试点应用,总结经验和教训,形成一套人工智能+制造融合模式建设方法论。
(张贝贝)